Dark Matter (and Dark Mediators) at the LHC

David Šálek

Nikhef jamboree 15/12/2015

DM production at the LHC

DM production at the LHC

experimental signatures

Run-I r	esults
---------	--------

Run-2 results

MET signatures

- mono-jet <u>Eur. Phys. J. C (2015) 75:299</u>
- mono-γ
- mono-W/Z
- heavy flavour + DM
- mono-H
- H→invisible

- PRD 91, 012008 (2015) PRD 90, 012004 (2014) PRL 112, 041802 (2014) HEP 09 (2014) 037 EPJC 75 (2015) 79 EPJC 75 (2015) 92
- <u>1510.06218</u> Phys. Rev. Lett. 115, 131801 (2015)

<u>1508.07869</u> <u>PRL 115, 131801 (2015)</u> <u>PRL 112, 201802 (2014)</u>

ATLAS-CONF-2015-080

Resonant searches

• di-jets

PRD 91,052007 (2015)

1512.01530

mono-jet

Event selection

- MET trigger
- jet pT > 120 GeV
- MET > 150 GeV
- lepton veto

Background process	Method	Control sample			
$Z(\rightarrow \nu\bar{\nu})$ +jets	MC and control samples in data	$Z/\gamma^* (\to \ell^+ \ell^-),$ $W(\to \ell \nu) \ (\ell = e, \mu)$			
$W(\rightarrow ev)$ +jets	MC and control samples in data	$W(\rightarrow e\nu)$ (loose)			
$W(\rightarrow \tau \nu)$ +jets	MC and control samples in data	$W(\rightarrow e\nu)$ (loose)			
$W(\rightarrow \mu \nu)$ +jets	MC and control samples in data	$W(\rightarrow \mu \nu)$			
$Z/\gamma^* (\to \ell^+ \ell^-) + jets$ ($\ell = e, \mu, \tau$)	MC-only				
$t\bar{t}$, single top	MC-only				
Diboson	MC-only				
Multijets	Data-driven				
Non-collision	Data-driven				

DM interpretations

David Šálek: Dark Matter (and Dark Mediators) at the LHC

David Šálek: Dark Matter (and Dark Mediators) at the LHC

mono-jet

Eur. Phys. J. C (2015) 75:299

• Limits on the suppression scale of the EFT operators are set assuming full EFT validity.

ATL-PHYS-PUB-2014-007

- Simplified models with Z'-like mediators reveal that
 - EFT limits are conservative in the resonant region.
 - EFT limits are not valid for light mediators.

David Šálek: Dark Matter (and Dark Mediators) at the LHC

DM interpretation

mono-jet prospects @ 14 TeV

ATL-PHYS-PUB-2014-007

- Already first data from Run-2 may bring improvements in sensitivity to DM.
 - Exclusion limits may be improved by factor of 2 with first few fb⁻¹.
 - 5σ discovery potential for M* ~ 1.7 TeV with 300 fb⁻¹.

searching for new mediators

- Simplified models (4 free parameters: m_X, M_R, g_q, g_X)
- Basic set of simplified models for the early Run-2 ATLAS and CMS searches was recommended by the DM Forum <u>1507.00966</u>
- Simplified models allow for a richer phenomenology and more complex interpretations
 - \rightarrow e.g. complementarity of mono-jets and di-jets <u>1503.05916</u>

10⁴

 $g_{\chi}^{A} = 1, \ g_{q}^{A} = 1$

di-jets @ 13 TeV

Events 10²

10⁴

13 TeV 3.3 fb⁻¹

ATLAS

Data

\s=13 TeV, 3.6 fb⁻¹

Background fit

Event selection

- jet trigger (pT > 360 GeV)
- 2 jets (pT > 440 GeV and 50 GeV)
- rapidity $|y^*| < 0.6$

ee+MET final state

a

χ

Phys. Rev. D. 90, 012004 (2014)

PRL 112, 201802 (2014)

ZH(→invisible)

7 TeV 4.5 fb⁻¹ 8 TeV 20.3 fb⁻¹

Event selection

- two opposite sign leptons,
 67 < mll < 106 GeV
- 3rd lepton veto (pT > 7 GeV)
- |MET pT*ll* / pT*ll* < 0.2
- $\Delta \phi$ (MET, pTmiss) < 0.2
- $\Delta \varphi \ell \ell < 1.7$
- Δφ(Ζ, MET) > 2.6
- jet veto (pT > 25 GeV)
- MET > 90 GeV

ZH(→invisible)

PRL 112, 201802 (2014)

- $BR(H \rightarrow inv.) = 75\%$ observed (63% expected)
- Higgs portal Dark Matter interpretation
 - scalar, vector and fermion DM
 - sensitive to DM with $m_X < m_H/2$

VBF $H \rightarrow invisible$

VBF events have distinct topology that allows for efficient signal sensitivity optimisations.

1508.07869

VBF $H \rightarrow invisible$

8 TeV 20.3 fb⁻¹

Requirement	SR1 SR2a		SR2b		
Leading Jet $p_{\rm T}$	>75 GeV >120 GeV		>120 GeV		
Leading Jet Charge Fraction	N/A	>10%	>10%		
Second Jet <i>p</i> _T	>50 GeV	>35 GeV	>35 GeV		
m_{jj}	>1 TeV	$0.5 < m_{jj} < 1 \text{ TeV}$	> 1 TeV		
$\eta_{j1} imes \eta_{j2}$	<0				
$ \Delta \eta_{jj} $	>4.8	>3	$3 < \Delta \eta_{jj} < 4.8$		
$ \Delta \phi_{jj} $	<2.5	N/A			
Third Jet Veto $p_{\rm T}$ Threshold	30 GeV				
$ \Delta \phi_{j,E_{ au}^{ ext{miss}}} $	>1.6 for j_1 , >1 otherwise	>0.5			
$E_{\mathrm{T}}^{\mathrm{miss}}$	>150 GeV	>200 GeV			

95% CL upper limits on BR($H \rightarrow inv.$)

Results	Expected	+1 σ	-1σ	+20	-2σ	Observed
SR1	0.35	0.49	0.25	0.67	0.19	0.30
SR2	0.60	0.85	0.43	1.18	0.32	0.83
Combined Results	0.31	0.44	0.23	0.60	0.17	0.28

→ the most stringent result from LHC Run-I

summary

- Many searches for Dark Matter using MET signatures were developed in Run-I
- EFT models were widely used in Run-1 → validity concerns
- Basic set of simplified models was recommended by the DM Forum
- Close collaboration of the experimental and theory communities continues in the new DM working group within LPCC → focus on the complementarity of experimental results and new models

• Stay tuned for the first Run-2 results!

mono-W/Z(qq)

√s = 13 TeV Ldt = 3.2 fb⁻¹ signal region Single top W+jets Z+jets Uncertainty Pre-fit background

Data 2015

ATLAS Preliminary Observed s = 13 TeV L=3.2 fb⁻¹ Expected ZZ_{XX} EFT ± 1σ

GeV

limit on M 800 dimension-7 EFT operator

Event selection

Events / GeV

10²

10

1

10

10⁻²

 10^{-3}

200

400

600

800

1000

1200

1400

E_T^{miss} [GeV]

Data/Bkg

- MET trigger
- MET > 250 GeV
- at least one large-R jet

ATLAS Preliminary

