First Run-2 SUSY Results

Ingrid Deigaard

15th of December 2015

Nikhef Jamboree

Dark Matter Candidate

Dark Matter Candidate

Fine-tuning of Higgs mass

Dark Matter Candidate

Fine-tuning of Higgs mass

Dark Matter Candidate

Fine-tuning of Higgs mass

Only extension of Poincaré

Where did we look in Run-1?

ATLAS SUSY Searches* - 95% CL Lower Limits

Sta	atus: July 2015						$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	$\int \mathcal{L} dt [\mathbf{f}]$	$\sqrt{s} = 7 \text{ TeV} \qquad \sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM\\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \ (\text{compressed}) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ GMSB (\ell NLSP) \\ GGM (bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ Gravitino LSP \end{array}$	$\begin{array}{c} 0\text{-3 } e, \mu/1\text{-2 } \tau & 2 \\ 0 \\ \text{mono-jet} \\ 2 \ e, \mu \ (\text{off-} Z) \\ 0 \\ 0\text{-1 } e, \mu \\ 2 \ e, \mu \\ 1\text{-2 } \tau + 0\text{-1 } \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>l</i> 2-6 jets 1-3 jets 2 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 1 <i>b</i> 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20 20 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1501.03555 1407.0603 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 ^{,4} gen. § med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\tilde{g} 1.25 TeV $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ \tilde{g} 1.1 TeV $m(\tilde{\chi}_1^0) < 350 \text{ GeV}$ \tilde{g} 1.34 TeV $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ \tilde{g} 1.37 TeV $m(\tilde{\chi}_1^0) < 300 \text{ GeV}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow k\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (\text{natural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 0-2 \ e, \mu \ 0 \\ 0 \\ 0 \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-ta 1 b 1 b	Yes Yes Yes b Yes Ag Yes Yes Yes	20.1 20.3 4.7/20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (wino NLSP) weak prod$	$ \begin{array}{c} 2 e, \mu \\ 2 e, \mu \\ 2 \tau \\ 3 e, \mu \\ 2-3 e, \mu \\ e_{\tau}/\gamma \gamma \\ e, \mu, \gamma \\ 4 e, \mu \\ 1 \\ e_{\tau}, \mu + \gamma \end{array} $	0 0 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^-$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^-$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$	$\widetilde{\ell}_{1}^{\pm}$ Disapp. trk $\widetilde{\ell}_{1}^{\pm}$ dE/dx trk 0 trk $r(e, \mu)$ 1-2 μ 2 γ displ. $ee/e\mu/\mu_{\mu}$ displ. vtx + jet	1 jet - 1-5 jets - - - μ - s -	Yes Yes - - Yes - -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1506.05332 1310.6584 1411.6795 1411.6795 1409.5542 1504.05162 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu\tau$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau\tilde{v}_{e}, e\tau\tilde{v}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}^{1}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$\begin{array}{cccc} \tau & e\mu, e\tau, \mu\tau \\ & 2 \ e, \mu \ (\text{SS}) \\ \tilde{v}_e & 4 \ e, \mu \\ \tilde{v}_\tau & 3 \ e, \mu + \tau \\ & 0 \\ & 0 \\ 2 \ e, \mu \ (\text{SS}) \\ & 0 \\ & 2 \ e, \mu \end{array}$	- 0-3 b - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- Yes Yes - - Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-015
)ther	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	\tilde{c} 490 GeV m($\tilde{\chi}_1^0$)<200 GeV	1501.01325
					1	0^{-1} Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary

Why we keep looking for SUSY?

Dark Matter Candidate

Fine-tuning of Higgs mass

Only extension of Poincaré

Why we keep looking for SUSY?

Paul, Sascha, Antonia, Ingrid: 0-leptons, 2-6 jets, and E_T^{miss}

Paul, Sascha, Antonia, Ingrid: 0-leptons, 2-6 jets, and E_T^{miss}

Paul, Sarah, Pierfrancesco: Stop decays with taus.

Paul, Sascha, Antonia, Ingrid: 0-leptons, 2-6 jets, and E_T^{miss}

Sarah: Chargino, neutralino, and slepton production

Paul, Sarah, Pierfrancesco: Stop decays with taus.

Paul, Sascha, Antonia, Ingrid: 0-leptons, 2-6 jets, and E_T^{miss}

Sarah: Chargino, neutralino, and slepton production

Paul, Sarah, Pierfrancesco: Stop decays with taus.

Sascha, Jeroen: Model independent general searches.

What am I looking for?

Squark and gluino, simplified models:

- No assumption on the SUSY breaking
- One type of sparticle is produced
- ✤ 100% BF with simple decay chain.

Analysis Strategy

- Signal regions: no leptons, 2-6 jets, and ETmiss.
- Cut on the effective mass discriminates between signal and background: $m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum_{i}^{n_{\text{jets}}} |p_{\text{T}}^{i}(\text{jet})|$
- Background estimates performed with transfer factors from Control Regions:
 N^{bkg,est} N^{bkg,MC}

$$N_{\rm SR}^{\rm bkg,est} = N_{\rm CR}^{\rm bkg,obs} \cdot \frac{1 \, {\rm SR}}{N_{\rm CR}^{\rm bkg,MC}}$$

- Five major backgrounds considered:
 - Top, W+jets, Z+jets, diboson, multijet.

Run -2 results

Run -2 results

Baquiromont	Signal Region						
nequirement	2jl	2jm	2jt	4jt	5j	6jm	6jt
$E_{\rm T}^{\rm miss} \ [{\rm GeV}] >$	200						
$p_{\rm T}(j_1) \; [{\rm GeV}] >$	200	300		200			
$p_{\rm T}(j_2) \; [{\rm GeV}] >$	200	50	200	100			
$p_{\rm T}(j_3) \ [{ m GeV}] >$	_			100			
$p_{\rm T}(j_4) \; [{\rm GeV}] >$	_			100			
$p_{\rm T}(j_5) \; [{\rm GeV}] >$	_			100			
$p_{\rm T}(j_6) \; [{\rm GeV}] >$	_			100			
$\Delta \phi(\text{jet}_{1,2,(3)}, \boldsymbol{E}_{ ext{T}}^{ ext{miss}})_{ ext{min}} >$	0.8	0.4	0.8	0.8 0.4			
$\Delta \phi(\mathrm{jet}_{i>3}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	—			0.2			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \ [{\rm GeV}^{1/2}] >$	15 20			_			
Aplanarity >	_			0.04			
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	_			0.2	0.25 0.2		0.2
$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	1200	1600	2000	2200	1600	1600	2000

Limits on simplified models

Limits on simplified models

Limits on simplified models

Conclusion

- First Run-2 SUSY results are public.
- Already exceeding Run-1 sensitivity, but barely.
- No hints of SUSY yet; limited by amount of data.
- ATLAS is already publishing a wide range of searches with more to come.
- ✤ We are ready for the data to come in 2016.

So stay tuned in 2016...

Backup Slides

Object definitions

Objects defined from AnalysisBase 2.3.28, SUSYTools-00-06-24

Photon selection

Cut	Value/description		
Acceptance	$p_{\rm T} > 25 \text{GeV}, \eta < 2.37$		
Quality	Tight		
Isolation	Cone20		
Overlap	$\Delta R(\gamma, \text{jet}) > 0.4$		

Muon selection

Cut	Value/description					
Baseline muon						
Acceptance	$p_{\rm T} > 10 {\rm GeV}, \eta < 2.4$					
Quality	Medium					
Signal muon						
Acceptance $p_{\rm T} > 10 {\rm ~GeV}$						
Isolation	GradientLoose					
	$ z_0^{PV} < 0.5 \text{ mm}$					
	$ d_0^{PV} /\sigma(d_0^{PV}) < 3$					
Overlap	$\Delta R(\mu, \text{jet}) > 0.4$					

Electron selection

Cut	Value/description				
	Baseline electron				
Algorithm	AuthorElectron				
Acceptance	$p_{\rm T} > 10 \text{ GeV}, \eta^{\rm clust} < 2.47$				
Quality	LooseLH				
Signal Electron					
Acceptance	$p_{\rm T} > 10 \text{ GeV}$ TightLH GradientLoose $ z_0^{PV} < 0.5 \text{ mm}$ $ d_0^{PV} /\sigma(d_0^{PV}) < 5$				
Quality					
Isolation					
Overlap	$\Delta R(e, \text{jet}) > 0.4$				

Jet selection

Cut	Value/description				
Baseline jet					
Algorithm	anti-k _t 4Topo				
Acceptance	$p_{\rm T} > 20 {\rm GeV}, \eta < 2.8$				
Quality	LooseBad (checked on jets with $p_{\rm T} > 20$ GeV)				
<i>b</i> -jet					
<i>b</i> -tagging algorithm	MV2c20 at 77% efficiency point				
Acceptance	$p_{\rm T} > 20 { m GeV}$, $ \eta < 2.5$				

Control Regions

CR	Background	CR process	CR selection
CRY	Z	γ	Isolated photon
CRQ	Multijets	Multijets	Reversed $\Delta \phi$ (jet,ETmiss) cuts Reversed METSig or ETmiss/meff cuts
CRW	W	W	1 electron or muon with pT > 25 GeV 30 GeV < mT(l,ETmiss) < 100 GeV,
CRT	ttbar	ttbar	1 electron or muon with pT > 25 GeV 30 GeV < mT(l,ETmiss) < 100 GeV,
VRZ	Z	Validate Z contribution	2 OS electrons or muons with pT > 25, 10 GeV 66 GeV < m(ll) < 116 GeV

CR definition

Cut	Control Region							
Cut	CRY	VRZ	CRQ	CRW	CRT			
1	HLT_g120_loose	HLT_e24_lhmedium_iloose_L1EM20VH OR HLT_e60_lhmedium / HLT_mu20_iloose_L1MU15 OR HLT_mu50	As for SR cut 1	As for VRZ	As for VRZ			
2-5			As for SR cuts 2-5					
6a	 ≥ 1 signal photon No selected e/µ as for SR Cut 6 	Exactly 2 OS selected signal electrons or muons: $p_{T}(e) > 25, 10 \text{ GeV}$ or $p_{T}(\mu) > 25, 10 \text{ GeV}$	As for SR Cut 6	Exactly 1 selected signal electron or muon with $p_{T}(e) > 25$ GeV or $p_{T}(\mu) > 25$ GeV	Exactly 1 selected signal electron or muon with $p_{T}(e) > 25$ GeV or $p_{T}(\mu) > 25$ GeV			
6b	_	_	_	No $p_{\rm T}$ >50 GeV sel. $ \eta < 2.5$ jet with MV2c20 77% eff.	$\geq 1 \ p_{\rm T} > 50 \text{ GeV sel. } \eta < 2.5$ jet with MV2c20 77% eff.			
6c	_	66 GeV < m(ℓℓ) < 116 GeV	_	$30 \text{ GeV} < m_T (\ell, E_T^{\text{miss}}) < 100 \text{ GeV}$	$30 \text{ GeV} < m_T (\ell, E_T^{\text{miss}}) < 100 \text{ GeV}$			
Use below:	$E_{\rm T}^{\rm miss}$ ' = $p_{\rm T}(\gamma) + E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss}, = \\ E_{\rm T}^{\rm miss} + p_{\rm T}(\ell\ell)$	_	Treat lepton as a jet	Treat lepton as a jet			
$p_{\rm T}(j_{1,2,,6})$	As for SR cuts							
$\Delta \phi(j_i, E_{\mathrm{T}}^{\mathrm{miss}})$	As for SR cut	No cut	$\begin{array}{c} \Delta \phi(j_i, E_{\rm T}^{\rm miss}) < 0.2, {\rm i=}\{1, 2, (3)\}: \\ [{\rm or} \ \Delta \phi(j_i, E_{\rm T}^{\rm miss}) < 0.1, p_{\rm T} > 50 \ {\rm GeV} \ {\rm jets} \ / \\ ({\rm for} \ 4{\rm j}, 5{\rm j}, 6{\rm j})] \end{array}$	No cut	No cut			
Aplanarity	No cut							
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)$ or $E_{\rm T}^{\rm miss}/\sqrt{H_T}$	As for SR cut	No cut	$\begin{split} X - \Delta &< E_{\rm T}^{\rm miss} / m_{\rm eff}(Nj) < X \\ X - \Delta &< E_{\rm T}^{\rm miss} / \sqrt{H_T} < X \sqrt{\rm GeV} \\ & \text{if } E_{\rm T}^{\rm miss} / m_{\rm eff}(Nj) > X \\ & \text{or } E_{\rm T}^{\rm miss} / \sqrt{H_T} > X \text{ in SR} \end{split}$	No cut	No cut			
$m_{\rm eff}$ (incl.)	As for SR cut							

CR plots

