Theory of absence: Jet vetoes for finding new physics

Lisa Zeune

Nikhef Jamboree 2015

Amsterdam, 14 December 2015

New physics Beyond the Standard Model must exist

LHC run II started this year

New energy range with opportunities for exciting new discoveries

Page 2 | Lisa Zeune | Jet vetoes in new physics searches at the LHC

Supersymmetry

- Theoretically very appealing
 Only possible extension of the spacetime symmetries, which particle physics builds on
- Many nice features
 E.g. unification of gauge couplings
- Adresses important shortcomings of the Standard Model
 - Provides a dark matter candidate
 Lightest supersymmetric particle

H

 \smile Solves the hierarchy problem

H

G

Corrections enter with opposite signs:
 Quadratic divergencies cancel

Page 3 | Lisa Zeune | Jet vetoes in new physics searches at the LHC

The Minimal Supersymmetric Model

- Supersymmetry (SUSY) transforms a bosonic state in a fermionic state and vice versa: Particle content of the SM approximately doubled
- No SUSY particles observed yet
- The LHC experiments undertake enormous efforts to search for these particles

Jet vetoes important for new physics searches

 Main challenge: Distinguish new physics (e.g SUSY) from overwhelming Standard Model background

Many LHC analyses use jet vetoes...

Stop and sbottom searches

- ATLAS (1308.2631) "Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in 8 TeV pp collisions with the ATLAS detector"
- CMS (CMS-PAS-SUS-13-018) "Search for direct production of bottom squark pairs"
- ATLAS (1506.08616) "ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider"

Electroweakino searches

- ATLAS (1407.0350) "Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at 8 TeV with the ATLAS detector"
- ATLAS (1403.5294) "Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at 8 TeV with the ATLAS detector"
- CMS (1405.7570) "Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV"
- ATLAS (1501.07110) "Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in 8 TeV pp collisions with the ATLAS detector"
- ATLAS (1509.07152) "Search for the electroweak production of supersymmetric particles in 8 TeV pp collisions with the ATLAS detector"

Other new physics searches

- CMS (CMS-PAS-SUS-14-019) "Search for dark matter and compressed mass-spectra supersymmetry with the vector boson fusion topology in pp collisions at 8 TeV"
- ATLAS (1211.6096) "Measurement of ZZ production in pp collisions at 7 TeV and limits on anomalous ZZZ and ZZg couplings with the ATLAS detector"
- ATLAS (1404.0051)"Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at 8 TeV with the ATLAS detector"
- ATLAS (1508.04735) "Searches for scalar leptoquarks in pp collisions a 8 TeV with the ATLAS detector"

Many LHC analyses use jet vetoes...

Stop and sbottom searches

- ATLAS (1308.2631) "Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in 8 TeV pp collisions with the ATLAS detector"
- CMS (CMS-PAS-SUS-13-018) "Search for direct production of bottom squark pairs"
- ATLAS (1506.08616)
 Collider''

Electroweakino searches

- ATLAS (1407.0350) "Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp
- ATLAS (1403.5294) "Search for direct production of charginos, neutralinos and sleptons in final states with two leptons

Jet vetoes are even more important when a new particle is discovered, facilitating clean and precise measurements

boson in o rev pp

 ATLAS (1509.07152) "Search for the electroweak production of supersymmetric particles in 8 TeV pp ATLAS detector"

Other new physics searches

- CMS (CMS-PAS-SUS-14-019) "Search for dark matter and compressed mass-spectra supersymmetry with the vector boson fusion topology in pp collisions at 8 TeV"
- ATLAS (1211.6096) "Measurement of ZZ production in pp collisions at 7 TeV and limits on anomalous ZZZ and ZZy couplings with the ATLAS detector"
- ATLAS (1404.0051)
 - at 8 TeV with the ATLAS detector"
- ATLAS (1508.04735) "Searches for scalar leptoquarks in pp

- ...

Exclusion limits

- Exclusion limits used in many phenomenological studies
- Tools to test your favourite model against the LHC exclusion limits:

CheckMATEDesai, Drees, Dreiner, Kim, Rolbiecki,
Schmeier, TattersallATOMKim, Papucci, Sakurai, Weiler

MadAnalysisBein, Chalons, Conte, Dumont, Fuks,
Kulkarni, Kraml, Schmitt, Sengupta, Wymant

FastLim	Papucci, Sakurai, Weiler, LZ
SmodelS	Kraml, Kulkarni, Laa, Lessa, Magerl, Magerl, Proschofsky, Traub, Waltenberger
XQCAT	Barducci, Belyaev, Buchkremer, Marrouche, Moretti, Panizzi

Exclusion limits

- Exclusion limits used in many phenomenological studies
- Tools to test your favourite model against the LHC exclusion limits:

CheckMATEDesai, Drees, Dreiner, Kim, Rolbiecki,
Schmeier, TattersallATOMKim, Papucci, Sakurai, Weiler

MadAnalysisBein, Chalons, Conte, Dumont, Fuks,
Kulkarni, Kraml, Schmitt, Sengupta, Wymant

FastLim	Papucci, Sakurai, Weiler, LZ
SmodelS	Kraml, Kulkarni, Laa, Lessa, Magerl, Magerl, Proschofsky, Traub, Waltenberger
XQCAT	Barducci, Belyaev, Buchkremer, Marrouche, Moretti, Panizzi

Focus today:

 For accurate exclusion limits, precise cross section predictions with reliable uncertainties are needed

Page 9 | Lisa Zeune | Jet vetoes in new physics searches at the LHC

Jet vetoes require resummation

• The effect of jet vetoes on the cross section is difficult to calculate

$$\begin{split} \sigma(p_T^{\mathsf{cut}}) \sim \sigma_0 \times (1 + \alpha_s \left[L^2 + L + c_1 \right] & \text{Large logarithms} \\ & + \alpha_s^2 [L^4 + L^3 + L^2 + L + c_2] & L = \ln(p_T^{\mathsf{cut}}/Q) \\ & + \dots & \downarrow & \downarrow \\ & \text{LL NLL} &) \end{split}$$

- For realistic and reliable cross-section predictions:
 Resummation required
- Theory uncertainties significantly reduced

Higgs production (0 jets)

Jet vetoes require resummation

• The effect of jet vetoes on the cross section is difficult to calculate

$$\begin{split} \sigma(p_T^{\mathsf{cut}}) &\sim \sigma_0 \times (1 + \alpha_s \left[L^2 + L + c_1 \right] & \text{Large logarithms} \\ &+ \alpha_s^2 [L^4 + L^3 + L^2 + L + c_2] & L = \ln(p_T^{\mathsf{cut}}/Q) \\ &+ \dots & \downarrow & \downarrow \\ &\text{LL} & \text{NLL} &) \end{split}$$

Currently experimental analyses use parton showers

Describe the leading logarithms (LL)

- → No uncertainty from jet veto
- If logarithms are large: Resummed calculation beyond LL accuracy needed Jet veto effect more significant $p_T^{\rm veto} \sim 30 \,\,{\rm GeV}$

Higgs: $Q \sim 125 \text{ GeV}$ New physics: $Q \sim 1000 \text{ GeV}$ for new physics processes!

Factorization and resummation in SCET

- Calculations with multiple scales lead to large logarithms, e.g. $\alpha_s \ln^2 \frac{p_T^2}{O}$
- <u>Factorization</u>: separate the physics associated with the different scales

$$d\sigma = H \times BB \times S \times \prod J_i \quad (B = \mathcal{I} \times f)$$

- Each component depend only on one scale, e.g. H(Q) contains $\alpha_s \ln^2 \frac{\mu}{Q} \rightarrow$ Remove logs by natural scale choice $\mu = Q$
- <u>Resummation</u>: Use RGEs to obtain all ingredients (*H*, *B*, *S*, *J*) at a common scale

Results at 8 TeV

- We focus on slepton production
- Example analysis: JHEP 1405 (2014) 071 All jets with p_T larger 20 GeV are vetoed

PRELIMINARY RESULTS

Results at 8 TeV

- We focus on slepton production
- Example analysis: JHEP 1405 (2014) 071 All jets with p_T larger 20 GeV are vetoed
- Results for the resummed cross section prediction

Results at 13 TeV

PRELIMINARY RESULTS

- LHC 13 TeV run will test heavier sleptons
- Higher slepton masses lead to larger logarithms $\ln(p_T^{\rm cut}/Q)$ in the slepton production cross section
- Importance of jet veto resummation increases

Uncertainties

	$200~{\rm GeV}$	$1000 { m ~GeV}$
NL0	12 %	22~%
NLL	21~%	39~%
NLL'	5 %	12 %

Summary and outlook

 Precise cross sections including jet veto resummation important to fully exploit the LHC data:

If we don't see new physics at the LHC, they ...

... are needed to set accurate exclusion limits

... can be used to refine the search strategy

If we discover a new particle, they ...

... are essential to precisely determine the properties of the discovered particle

... can help to reveal the underlying model realised in nature

• Next steps:

- ---> Develop framework for jet veto resummation for generic processes
- \longrightarrow Calculated jet-veto resummed cross section for other relevant processes
- Public code providing resummed predictions

Page 16 | Lisa Zeune | Jet vetoes in new physics searches at the LHC