XENON1T DAQ to analysis: *"klein maar fijn"*

Christopher Tunnell Nikhef Jamboree '15

Save interesting data Reconstruct data Analyze data

Hardware and Software Components

Digitizers

- Off the shelf
- CAEN V1724 same as in XENON100
- New firmware for XENON1T
 - Triggerless readout
- 8 channels, 100 Ms/sec, 14-bit samples

Hardware and Software Components

N

write less, do more.

Google

xe100_080409_1059_000000.xed: Event 88, PMT 9

Insert "occurrences" into DB, these are data quanta

Unstructured data buffer

- Readout is CAEN -> MongoDB convertor
- OTC MongoDB database
 - Fast
 - Simple
 - Scalable
 - Supported (beyond physics!)
 - CMS, Guardian, Orange, etc
- Need fast network too, HFT switch (left)
- Queryable:
 - "Give me all data over a one-second time window"

mongoDB

Who	Purpose	Experience
mongoDB	Offload data handling and processing to database	Positive, but high rate of change: gets quicker but yearly API changes
CAEN Tools for Discovery Electronic Instrumentation	Digitizer and read out signals	Works but frequent driver problems and a pyCAEN would help testing.
django	Run DAQ	Usability of DAQ increased using web also less work for us
	Write trigger routines in Python that are faster than C++	Refactoring easy and allows online processing, but requires good testing

Time ------

<u>
</u>

Thanks PDP!

Who	Purpose	Experience
netherlands Science center	Allow <i>Big Data</i> tools (e.g. pandas, MongoDB) in a "ROOT" world	NLeSC delivers expert <i>niche</i> help and should listen to them!
GitHub	Software Project Management	Necessary for maintainable project and better than alternatives
Travis Cl	Continuous testing on Linux and OS X	Prevents code stink. Otherwise, how know broken?
	Just-in-time compiling for Python and packaging	Key speed gains made project success. Packaging means usable.
GITTER	Day to day chatting	Quite nice, even for operations and analysis
E	ach has given some lev	el of financial suppor

NumPy

learnSpark

$IP[y]: = \sum_{\delta_1, \rho_1, \sigma_2} \sum_{\delta_1, \sigma_2} \sum_{\delta_2} \sum_{\delta_1, \sigma_2} \sum_{\delta_2} \sum_{\delta_1, \sigma_2} \sum_{\delta_2} \sum_{\delta_1, \sigma_2} \sum_{\delta_1, \sigma_2} \sum_{\delta_2} \sum_{\delta_2} \sum_{\delta_2} \sum_{\delta_1, \sigma_2} \sum_{\delta_2} \sum_{\delta_2$

First light Event 0, pulse 42137-42236, Channel 7 70 Data Threshold 0.5 60 Noise level Boundary threshold 50 0.4 ADC counts above baseline 40 0.3 .0. be / sample 30 20 0.1 10 -10∟ 0 20 40 60 80 100 Sample number (10 ns)

See <u>xenon1t.org</u> for more

See xenon1t.org for more

NumPv

