

Minijets and MPI in p-Pb collisions

Emilia Leogrande - Utrecht University (NL)

NIKHEF Jamboree - 14th Dec 2015

Multiple Parton Interactions

Nucleon - nucleon collision == collision between bunches of partons

- \Box Nucleon nucleon collision == collision between bunches of partons
- The higher the collision energy, the higher the resolvable parton density in the nucleon
 - At LHC mostly gluon-gluon

- Nucleon nucleon collision == collision between bunches of partons
- The higher the collision energy, the higher the resolvable parton density in the nucleon
 - At LHC mostly gluon-gluon
- MPI belong to Underlying Event
 - activity accompanying the leading-p_T scattering

- Nucleon nucleon collision == collision between bunches of partons
- The higher the collision energy, the higher the resolvable parton density in the nucleon
 - At LHC mostly gluon-gluon
- MPI belong to Underlying Event
 - activity accompanying the leading-p_T scattering

 \Box Hard (high-p_T scale) and semi-hard (low-p_T scale) MPI

Emilia Leogrande (UU)

□ Hard MPI

 $\hfill\square$ characteristic topology of the event, e.g. 4 jets with pair-balanced p_T

□ Hard MPI

 \Box characteristic topology of the event, e.g. 4 jets with pair-balanced p_T

□ Hard MPI

 \Box characteristic topology of the event, e.g. 4 jets with pair-balanced p_T

$$\sigma_{A+B}^{DPS} = \frac{m}{2} \frac{\sigma_A \cdot \sigma_B}{\sigma_{eff}}$$

Emilia Leogrande (UU)

□ Hard MPI

$\hfill\square$ characteristic topology of the event, e.g. 4 jets with pair-balanced p_T

Emilia Leogrande (UU)

Semi-hard MPI

□ Low-p_T scale <=> non-perturbative region

Semi-hard MPI

- □ Low-p_T scale <=> non-perturbative region
- Evidence from charged-particle multiplicity distribution

Semi-hard MPI

- □ Low-p_T scale <=> non-perturbative region
- Evidence from charged-particle multiplicity distribution

Emilia Leogrande (UU)

Semi-hard MPI

- □ Low-p_T scale <=> non-perturbative region
- Evidence from charged-particle multiplicity distribution

Emilia Leogrande (UU)

Measuring semi-hard MPI experimentally: minijets in p-Pb collisions in ALICE

Measuring semi-hard MPI experimentally: minijets in p-Pb collisions in ALICE

□ Semi-hard MPI produce minijets (jets at low p_T)

Measuring semi-hard MPI experimentally: minijets in p-Pb collisions in ALICE

- □ Semi-hard MPI produce minijets (jets at low p_T)
- Minijets overlap in high multiplicity collisions
 not reconstructable with standard jet-reco algorithms
 => two-particle correlation method
 - even more important in p-Pb collisions!

The ALICE detector

The ALICE detector

□ ITS □ $|\eta| < 0.9$ □ TPC □ $|\eta| < 0.9$ □ $|\eta| < 0.9$ □ $|\eta| < 0.9$

Emilia Leogrande (UU)

Emilia Leogrande (UU)

- □ For each event:
 - \Box trigger particles: i.e. those with $p_{T,trig} > p_{T,trig min}$ (= 0.7 GeV/c)

- □ For each event:
 - \Box trigger particles: i.e. those with $p_{T,trig} > p_{T,trig min}$ (= 0.7 GeV/c)
 - □ associated particles: i.e. p_{T,assoc min} (= 0.7 GeV/c) < p_{T,assoc} < p_{T,trig}

Universiteit Utrecht

- ❑ For each event:
 - \Box trigger particles: i.e. those with $p_{T,trig} > p_{T,trig min}$ (= 0.7 GeV/c)
 - □ associated particles: i.e. p_{T,assoc min} (= 0.7 GeV/c) < p_{T,assoc} < p_{T,trig}
 - count associated particles per trigger particle
 - □ as function of azimuthal and pseudorapidity difference of the pair

Jniversiteit Utrecht

- ❑ For each event:
 - \Box trigger particles: i.e. those with $p_{T,trig} > p_{T,trig min}$ (= 0.7 GeV/c)
 - □ associated particles: i.e. p_{T,assoc min} (= 0.7 GeV/c) < p_{T,assoc} < p_{T,trig}
 - count associated particles per trigger particle
 - as function of azimuthal and pseudorapidity difference of the pair
- Average over all events

Universiteit Utrecht

- ☐ For each event:
 - \Box trigger particles: i.e. those with $p_{T,trig} > p_{T,trig min}$ (= 0.7 GeV/c)
 - □ associated particles: i.e. p_{T,assoc min} (= 0.7 GeV/c) < p_{T,assoc} < p_{T,trig}
 - count associated particles per trigger particle
 - as function of azimuthal and pseudorapidity difference of the pair
- Average over all events

Associated particles in near- and away-side: minijet fragmentation
 => from semi-hard process

Emilia Leogrande (UU)

0-5%

Emilia Leogrande (UU)

- □ Away side (π/2 < Δφ < 3π/2)
 □ short + long range (|Δη| < 1.8): recoil jet + ridge
- □ Near side (- $\pi/2 < \Delta \phi < \pi/2$)
 - □ short range ($|\Delta \eta| < 1.2$): jet peak + ridge
 - □ long range $(1.2 < |\Delta \eta| < 1.8)$: ridge

[Phys. Lett. B 741 (2015) 38-50]

Minijet correlations above the ridge

Emilia Leogrande (UU)

[Phys. Lett. B 741 (2015) 38-50]

Minijet correlations above the ridge

Emilia Leogrande (UU)

[Phys. Lett. B 741 (2015) 38-50]

Minijet correlations above the ridge

[Phys. Lett. B 741 (2015) 38-50]

Minijet correlations above the ridge

[Phys. Lett. B 741 (2015) 38-50]

ALICE

Minijet correlations above the ridge

Emilia Leogrande (UU)

RESULTS

Emilia Leogrande (UU)

[Phys. Lett. B 741 (2015) 38-50]

ALICE

Per-trigger minijet yields vs multiplicity

 From intermediate to high multiplicity
 * associated and trigger particles scale with the same factor with multiplicity

Emilia Leogrande (UU)

Per-trigger minijet yields vs multiplicity ALICE Universiteit Utrecht * From intermediate to high multiplicity * associated and trigger particles scale ⟨**N** assoc,nearside′ 0.5 ALICE p-Pb s_{NN} = 5.02 TeV with the same factor with multiplicity $\langle {f N}$ assoc,nearside $^{\prime}$ 0.4 ALICE p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0.9 Subtracted $p_{\rm T,assoc} < p_{\rm T,trig} < 5.0 \ {\rm GeV}/c$ 0.8 0.3 0. • • • • • 0.6 • • • 0.2 0.5 $\begin{array}{l} 0.7 \; {\rm GeV}/c < p_{\rm T,trig}, \ 0.7 \; {\rm GeV}/c < p_{\rm T,assoc} \\ 2.0 \; {\rm GeV}/c < p_{\rm T,trig}, \ 0.7 \; {\rm GeV}/c < p_{\rm T,assoc} \\ 2.0 \; {\rm GeV}/c < p_{\rm T,trig}, \ 2.0 \; {\rm GeV}/c < p_{\rm T,assoc} \end{array}$ 0.4 • **0.3**⊢ 0.1 0.2 $0.7 < p_{T,assoc} < p_{T,trig} < 5.0 \text{ GeV}/c$ 0.1 20 60 100 40 80 VOA multiplicity class (%) ALI-DER-92095 20 40 60 80 100

Emilia Leogrande (UU)

[Phys. Lett. B 741 (2015) 38-50]

ALI-PUB-85821

VOA multiplicity class (%)

[Phys. Lett. B 741 (2015) 38-50] Per-trigger minijet yields vs multiplicity ALICE * From intermediate to high multiplicity * associated and trigger particles scale ⟨**N** assoc,nearside′ ALICE p-Pb s_{NN} = 5.02 TeV 0.5 with the same factor with multiplicity ⟨**N** assoc,nearside ∕ 0.4 ALICE p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0.9 Subtracted $p_{_{\mathrm{T,assoc}}} < p_{_{\mathrm{T,trig}}} < 5.0 \ \mathrm{GeV}/c$ 0.8 0.3 0.6 • • • • • 0.2 0.5 $\begin{array}{l} 0.7 \; {\rm GeV}/c < p_{\rm T,trig}, \ 0.7 \; {\rm GeV}/c < p_{\rm T,assoc} \\ 2.0 \; {\rm GeV}/c < p_{\rm T,trig}, \ 0.7 \; {\rm GeV}/c < p_{\rm T,assoc} \\ 2.0 \; {\rm GeV}/c < p_{\rm T,trig}, \ 2.0 \; {\rm GeV}/c < p_{\rm T,assoc} \end{array}$ 0.4 **0.3**⊢ 0.1 **0.2** $0.7 < p_{T,assoc} < p_{T,trig} < 5.0 \text{ GeV}/c$ 20 40 60 100 80 VOA multiplicity class (%) ALI-DER-92095 20 40 60 80 100 VOA multiplicity class (%) ALI-PUB-85821

 high multiplicity p-Pb jet-like events are not build up by more populated jets, but rather by a higher number of jets (i.e. parton-parton scatterings)

Emilia Leogrande (UU)

 high multiplicity p-Pb jet-like events are not build up by more populated jets, but rather by a higher number of jets (i.e. parton-parton scatterings)

Emilia Leogrande (UU)

 high multiplicity p-Pb jet-like events are not build up by more populated jets, but rather by a higher number of jets (i.e. parton-parton scatterings)

Emilia Leogrande (UU)

Uncorrelated parton-parton scatterings

When p_T -range for trigger and associated particles is the same, each trigger comes with $N_{assoc,NS+AS} =>$ correlated triggers = trigger + assoc,NS + assoc,AS

Emilia Leogrande (UU)

[Phys. Lett. B 741 (2015) 38-50]

Uncorrelated parton-parton scatterings

When p_T -range for trigger and associated particles is the same, each trigger comes with $N_{assoc,NS+AS} =>$ correlated triggers = trigger + assoc,NS + assoc,AS

Emilia Leogrande (UU)

[Phys. Lett. B 741 (2015) 38-50]

Uncorrelated parton-parton scatterings

When p_T -range for trigger and associated particles is the same, each trigger comes with $N_{assoc,NS+AS} =>$ correlated triggers = trigger + assoc,NS + assoc,AS

Emilia Leogrande (UU)

14 of 16

Uncorrelated seeds vs multiplicity

Emilia Leogrande (UU)

Uncorrelated seeds vs multiplicity

- high multiplicity: MPI increase linearly with multiplicity
 - * dominate the particle production mechanism at high multiplicity
- Iow multiplicity: change in dynamics

Emilia Leogrande (UU)

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Multiplicity dependence of jet-like two-particle correlation structures in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration*

ARTICLE INFO

ABSTRACT

Article history: Received 23 June 2014 Received in revised form 8 October 2014 Accepted 15 Noxember 3014 Beceived in Levised torm 8 Octoper 5014 Beceived 53 Inue 5014

Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range $0.7 < p_{T,assoc} < p_{T,trig} < 5.0 \text{ GeV}/c$ is examined, to of 2.02 LeV. The transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0 \text{ GeV}/c$ is examined, to of 2.05 LeV. The transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0 \text{ GeV}/c$ is examined, to use an uncleon–uncleon centre-of-mass energy use and the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0 \text{ GeV}/c$ is examined, to use an uncleon–uncleon centre-of-mass energy use an uncleon–uncleon centre-of-mass energy to be the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0 \text{ GeV}/c$ is examined, to use an uncleon–uncleon centre-of-mass energy use an uncleon–uncleon centre-of-mass energy to be the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0 \text{ GeV}/c$ is examined, to the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0 \text{ GeV}/c$ is examined, to be the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0 \text{ GeV}/c$ is examined, to the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0 \text{ GeV}/c$ is examined.

$\Box \quad Two-particle correlations allow to measure the number of MPI in the low-p_T region by studying the minijet fragmentation$

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Multiplicity dependence of jet-like two-particle correlation structures in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration*

ARTICLE INFO

ABSTRACT

Article history: Received 23 June 2014 Received in revised form 8 October 2014 Accepted 15 Noxember 3014 Beceived in Lenised Lotum 8 Octoper 5014 Beceived 53 Inue 5014 Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range $0.7 < p_{T,assoc} < p_{T,trig} < 5.0$ GeV/c is examined, to ot 2.05 LeV. The transverse-momentum use $0.2 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to weaver phyte transverse-momentum use $0.2 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to use the transverse-momentum use $0.4 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to use the transverse-momentum use $0.4 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to use the transverse-momentum use $0.4 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to associated particles are used to the transverse-momentum use $0.4 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to the transverse-momentum use $0.4 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to associate provide the transverse-momentum use $0.4 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to the transverse-momentum use $0.4 < b^{T,assoc} < b^{L,trig} < 2.0$ GeV/c is examined, to the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0$ GeV/c is examined, to the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0$ GeV/c is examined, to the transverse-momentum use $0.4 < b^{T,assoc} < b^{T,trig} < 2.0$ GeV/c is examined.

Two-particle correlations allow to measure the number of MPI in the low-p_T region by studying the minijet fragmentation

- minijet fragmentation independent of multiplicity
- jet- and collective-like correlations have different physical origin
- uncorrelated sources of particle production
 - □ first estimate of semi-hard MPI in high multiplicity environments

Emilia Leogrande (UU)

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Multiplicity dependence of jet-like two-particle correlation structures in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration*

ARTICLE INFO

ABSTRACT

Article history: Received 23 June 2014 Received in revised form 8 October 2014 \$ccepted 15 Noxember 3014 Beceived in Lenised toru 8 Octoper 5014 Beceived 53 Inue 5014 Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range $0.7 < p_{T,assoc} < p_{T,trig} < 5.0$ GeV/c is examined, to ot 2.05 LeV. The transverse-momentum usuals $0.2 < b^{1,assoc} < b^{1,trig} < 2.0$ GeV/c is examined, to weaver phyte transverse-momentum usuals $0.2 < b^{1,assoc} < b^{1,trig} < 2.0$ GeV/c is examined, to use the transverse-momentum usuals $0.3 < b^{1,assoc} < b^{1,trig} < 2.0$ GeV/c is examined, to use the transverse-momentum usuals $0.3 < b^{1,assoc} < b^{1,trig} < 2.0$ GeV/c is examined, to use the transverse-momentum use the transverse of the transverse energy of 2.05 LeV. The transverse-momentum use the transverse energy of 2.05 LeV. The transverse-momentum use the transverse energy of 2.05 LeV. The transverse-momentum use the transverse energy energy of 2.05 LeV. The transverse-momentum use the transverse energy energy end to the transverse energy end to the transverse energy end to the transverse end to t

Two-particle correlations allow to measure the number of MPI in the low-p_T region by studying the minijet fragmentation

- minijet fragmentation independent of multiplicity
- jet- and collective-like correlations have different physical origin
- uncorrelated sources of particle production
 - □ first estimate of semi-hard MPI in high multiplicity environments

Thank you for your attention

Emilia Leogrande (UU)

Back up

Emilia Leogrande (UU)

Jet-like correlations above the ridge

Mean impact parameter from Glauber

[Phys. Lett. B 741 (2015) 38-50]

decreasing of the average number of MPIs for most peripheral events

Emilia Leogrande (UU)

[Phys. Lett. B 741 (2015) 38-50]

Per-trigger minijet yields

N

irality of the collision

A-A collisions can be characterized by the centrality, defined through b, N_{part} (N_{spec})

irality of the collision

A-A collisions can be characterized by the centrality, defined through b, N_{part} (N_{spec})

irality of the collision

A-A collisions can be characterized by the centrality, defined through b, N_{part} (N_{spec})

[Phys. Lett. B 741 (2015) 38-50]

Uncorrelated seeds / Ncoll

PERFORMANCE 03/07/2013

90

Centrality [%]

100

80

NIKHEF Jamboree - 14/12/2015

70

60

Emilia Leogrande (UU)

[Phys. Lett. B 741 (2015) 38-50] Uncorrelated seeds / Ncoll

Comparison pp and p-Pb

Emilia Leogrande (UU)

Universiteit Utrecht