Azimuthal anisotropy of R = 0.2 charged jet production in $\sqrt{s_{\rm NN}} = 2.76$ TeV Pb–Pb collisions

Pb–Pb collisions at ALICE: studying the QGP 📢

The ALICE experiment is aimed at studying the Quark Gluon Plasma

'Our aim is to study the physics of strongly interacting matter at extreme energy densities, where the formation of a new phase of matter, the quark-gluon plasma, is expected.'

Jets in heavy-ion collisions

dense QCD matter

Hard scattering $(Q^2 > 1 (GeV/c)^2)$

- Radiation of quarks and gluons
- Hadronization into colorless spray of particles: 'jets'

Pb–Pb collisions: scattered partons interact with medium \longrightarrow 'jet quenching'

Jets in heavy-ion collisions

dense QCD matter

Hard scattering $(Q^2 > 1 (GeV/c)^2)$

- Radiation of guarks and gluons
- Hadronization into colorless spray of particles: 'jets'

Pb-Pb collisions: scattered partons interact with medium \rightarrow 'jet quenching'

Experimental signatures of parton energy loss in Pb-Pb collisions

- Di-jet energy asymmetry
- Jet broadening
- Suppression of yield

This talk: path-length dependence of parton energy loss

Jet suppression: R_{AA} of jets

- Strong suppression in central and peripheral collisions
- Model comparisons (JEWEL¹, YaJEM²): constrain energy loss mechanism

 $v_2^{ch jet}$: 'differential' approach to energy loss

²T.Renk, PRC 78 034908

Redmer Alexander Bertens - December 14, 2015 - slide 4 of 18

K.C.Zapp *et al.* JHEP 1303 080

$v_2^{ch jet}$: energy loss and medium geometry

Different theoretical predictions on path-length (*L*) dependence of parton energy loss $(\Delta E)^{3,4,5}$

$$\underbrace{\Delta E \propto L}_{\text{collisional}} \leftrightarrow \underbrace{\Delta E \propto L^2}_{\text{radiative}} \leftrightarrow \underbrace{\Delta E \propto L^3}_{\text{AdS/CFT}}?$$

 $v_2^{ch jet}$: comparing short to long L at fixed medium density

 5 C. Marquet, T. Renk, PLB685 270-276 (\propto $\textit{L}^3)$

Redmer Alexander Bertens - December 14, 2015 - slide 5 of 18

³R.Baier *et al.* NPB484 265-282 (\propto *L*) ⁴R.Baier *et al.* NPB483 291-320 (\propto *L*²)

DATA ANALYSIS

Outline of $v_2^{ch jet}$ measurement

 $v_2^{\text{ch jet}}$ is measured using the 'in-plane' and 'out-of-plane' p_{T} -differential jet yields $N_{\text{in}}, N_{\text{out}}$

$$v_2^{\mathrm{ch \, jet}} = rac{\pi}{4} rac{1}{R} rac{N_{\mathrm{in}} - N_{\mathrm{out}}}{N_{\mathrm{in}} + N_{\mathrm{out}}}$$

resolution *R* corrects for the finite precision of symmetry plane estimate $\Psi_{\text{EP}, 2}$

Outline of $v_2^{ch jet}$ measurement

 $v_2^{\text{ch jet}}$ is measured using the 'in-plane' and 'out-of-plane' p_{T} -differential jet yields N_{in} , N_{out}

$$v_2^{\rm ch jet} = \frac{\pi}{4} \frac{1}{R} \frac{N_{\rm in} - N_{\rm out}}{N_{\rm in} + N_{\rm out}}$$

resolution R corrects for the finite precision of symmetry plane estimate $\Psi_{\rm EP,\ 2}$

 $v_2^{\rm ch\,jet}$ is the second coefficient of a Fourier series

$$\frac{dN_{\text{jet}}}{d(\varphi_{\text{jet}} - \Psi_n)} \propto 1 + \sum_{n=1}^{\infty} 2v_n^{\text{ch jet}} \cos[n(\varphi_{\text{jet}} - \Psi_n)]$$
$$N_{\text{in}} = \int_{in} \frac{dN_{\text{jet}}}{d(\varphi_{\text{jet}} - \Psi_{\text{EP},2}^{\text{VO}})} = a\left(\pi + 4v_2^{\text{ch jet}}\right)$$
$$N_{\text{out}} = \int_{out} \frac{dN_{\text{jet}}}{d(\varphi_{\text{jet}} - \Psi_{\text{EP},2}^{\text{VO}})} = a\left(\pi - 4v_2^{\text{ch jet}}\right)$$

Short intermezzo: 'hydrodynamic' flow

ALICE has published many times on *flow* $(v_2, v_3...)$

In a nutshell ...

- Almond-shaped overlap region
- Collective expansion of thermalized medium in vacuum
- Spatial anisotropy is converted to momentum-space anisotropy

Result: cosine modulation (v_2) of azimuthal track distribution at low p_T

... beware ...: though techniques and terminology are similar

- flow: modulation of track azimuth at low p_T from collective expansion
- v₂^{ch jet}: azimuthal modulation of jet distribution (high p_T) from energy loss

Demonstration by an ultracold atom gas system

Redmer Alexander Bertens - December 14, 2015 - slide 8 of 18

Jet reconstruction in Pb-Pb collisions

'Jets' in heavy-ion collisions are not so easy to understand ...

- Theoretical definition of jet: colorless spray of particles emitted by parton
- Experimental definition of jet: fully determined by jet finding algorithm (this analysis: anti-k_T with R = 0.2: maximum η-φ distance of jet constituent tracks to jet axis)

Jet reconstruction in Pb-Pb collisions

'Jets' in heavy-ion collisions are not so easy to understand \ldots

- Theoretical definition of jet: colorless spray of particles emitted by parton
- Experimental definition of jet: fully determined by jet finding algorithm (this analysis: anti-k_T with R = 0.2: maximum η-φ distance of jet constituent tracks to jet axis)

- 'Background' (*Underlying Event*) large [1] compared to jet energy
- UE is not uniform (hydrodynamic flow [2], statistical fluctuations [3])

ALICE

[1] UE energy $\langle \rho_{ch} \rangle$

Event-by-event estimate of energy density of UE

$$\left< \rho_{\rm ch} \right> = {\rm median} \left(\frac{\rho_{\rm T, \ ch}^{\rm jet}}{A^{\rm jet}} \right)$$

Linear dependence of $\langle \rho_{\rm ch} \rangle$ on multiplicity

Quick example: 0-10% centrality

- $\langle
 ho_{\rm ch}
 angle pprox$ 140 GeV/c A^{-1}
- $A \propto \pi R^2$

 \propto 20 GeV/c background for a R=0.2 jet

[2] Jet-by-jet UE subtraction

UE flow (v_2 and v_3) is accounted for in $\rho_{ch \ local}$ by fitting a Fourier expansion to the azimuthal p_T distribution event-by-event:

$$\rho_{\mathsf{ch}}(\varphi) = \rho_0 \left(1 + 2\{v_2 \cos[2(\varphi - \Psi^{\mathsf{V0}}_{\mathsf{EP},\ 2})] + v_3 \cos[3(\varphi - \Psi^{\mathsf{V0}}_{\mathsf{EP},\ 3})]\} \right)$$

Note: maxima of v_2 , v_3 naturally indicate symmetry angles $\Psi_{EP, 2}$ and $\Psi_{EP, 3}$!

[3] Fluctuations of UE

Universiteit Utrecht

UE fluctuations in φ , η around $\langle
ho_{\mathsf{ch}} \rangle$

- A jet of p_T = x sitting on an upward fluctuation of magnitude a will be reconstructed at p_T = x + a ...
- ... likewise a jet of $p_T = x$ sitting on a downward fluctuation of magnitude a will be reconstructed at $p_T = x a$

Random cone procedure to determine magnitude fluctuations

$$\delta p_{\rm T} = \underbrace{\sum p_{\rm T}^{\rm track}}_{\rm cone \ p_{\rm T}} - \underbrace{\rho \pi R^2}_{\rm expectation}$$

 $\delta p_{\rm T}$ distribution used to *unfold* jet spectra:

$$M(p_{\rm T,ch}^{\rm jet,rec}) = \int G(p_{\rm T,ch}^{\rm jet,rec}, p_{\rm T,ch}^{\rm jet,gen}) T(p_{\rm T,ch}^{\rm jet,gen}) \varepsilon(p_{\rm T,ch}^{\rm jet,gen}) dp_{\rm T,ch}^{\rm jet,gen}$$

[3] Fluctuations of UE

UE fluctuations in φ , η around $\langle \rho_{ch} \rangle$

- A jet of $p_T = x$ sitting on an upward fluctuation of magnitude a will be reconstructed at $p_T = x + a$...
- ... likewise a jet of $p_T = x$ sitting on a downward fluctuation of magnitude a will be reconstructed at $p_{\rm T} = x - a$

Random cone procedure to determine magnitude fluctuations

$$\delta p_{\rm T} = \underbrace{\sum p_{\rm T}^{\rm track}}_{\rm cone \ p_{\rm T}} - \underbrace{\rho \pi R^2}_{\rm expectation}$$

 $\delta p_{\rm T}$ distribution used to *unfold* jet spectra:

$$M(p_{\mathrm{T,ch}}^{\mathrm{jet,rec}}) = \int G(p_{\mathrm{T,ch}}^{\mathrm{jet,rec}}, p_{\mathrm{T,ch}}^{\mathrm{jet,gen}}) T(p_{\mathrm{T,ch}}^{\mathrm{jet,gen}}) \varepsilon(p_{\mathrm{T,ch}}^{\mathrm{jet,gen}}) \mathrm{d}p_{\mathrm{T,ch}}^{\mathrm{jet,gen}}$$

Fluctuations quantified by $\delta p_{\rm T}$

UE subtraction technique succesfully removes flow bias from UE

- Modulation of mean δp_T decreases strongly
- Width of δp_{T} in-plane is larger than out-of-plane
- In-plane and out-of-plane jet spectra need to be unfolded independently to properly treat UE fluctuations

RESULTS

$v_2^{\text{ch jet}}$ in 30–50% collision centrality

arXiv:1509.07334 [nucl-ex]

- Non-zero $v_2^{\text{ch jet}}$ over entire p_{T} range
- Confirmation of jet energy loss in the collision medium
- Energy loss sensitive to collision geometry up to high p_{T} ۲

$v_2^{\text{ch jet}}$ in 30–50%, model comparison

JEWEL⁶: energy loss in presence of QCD medium

- Good agreement with model prediction (effective L^2 dependence of energy loss)
- Additional modeling and high-precision measurements necessary to truly constrain energy loss mechanisms

K.C.Zapp et al. JHEP 1303 080

K.C.Zapp, EPJC74 2, 2762

Universiteit Utrecht

Redmer Alexander Bertens - December 14, 2015 - slide 15 of 18 Azimuthal anisotropy of R = 0.2 charged jet production

What about central collisions ?

• JEWEL (homogeneous nuclei) underestimates v₂^{ch jet}

Comparison to previous measurements

Other observables sensitive to parton energy loss

- High- p_T single particle v_2^{part} (ALICE⁷, CMS⁸)
- $v_2^{ch+emjet}$ of jets comprising charged and neutral fragments (ATLAS⁹)

Redmer Alexander Bertens - December 14, 2015 - slide 17 of 18 Azimuthal anisotropy of R = 0.2 charged jet production

Conclusion

 $v_2^{\rm ch\ jet}$ measured in Pb–Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV by ALICE

[analysis] Main difficulty in jet analyses in Pb-Pb collisions

- Large, non-uniform background (UE)
- UE treatment succesfully accounts for fluctuations and flow

[observations] Non-zero $v_2^{ch jet}$

- Strong parton energy loss
- Senstitive to the collision geometry up to high $p_{\rm T}$

Thank you for your attention

Redmer Alexander Bertens - December 14, 2015 - slide 18 of 18

BACKUP

$v_2^{\text{ch jet}}$ in 0-5% and 30-50% collision centrality

- $v_2^{\text{ch jet}}$ is measured in 0-5% (left) and 30-50% (right) collision centrality
 - $[0-5\%] \approx 2 \sigma$ deviation from 0
 - [30-50%] \approx 3 4 σ deviation from 0

$$\tilde{\chi}^{2}(\epsilon_{corr},\epsilon_{shape}) = \left[\left(\sum_{i=1}^{n} \frac{(v_{2i} + \epsilon_{corr}\sigma_{corr,i} + \epsilon_{shape})^{2}}{\sigma_{i}^{2}} \right) + \epsilon_{corr}^{2} + \frac{1}{n} \sum_{i=1}^{n} \frac{\epsilon_{shape}^{2}}{\sigma_{shape,i}^{2}} \right]$$

ALICE

¹⁰Phys.Rev. C77, 064907 (2008), 0801.1665

Redmer Alexander Bertens - December 14, 2015 - slide 18 of 18

UE flow under control?

Expected $\delta p_{\rm T}$ width without flow from charged particles from N_A (multiplicity in a cone) $\langle p_{\rm T} \rangle$ (mean $p_{\rm T}$ of particle spectrum) $\sigma(p_{\rm T})$ (width of particle spectrum)

$$\sigma(\delta p_{\rm T}^{\nu_n=0}) = \sqrt{N_{\rm A}\sigma^2(p_{\rm T}) + N_{\rm A}\langle p_{\rm T}\rangle^2}$$

Adding v_n by introducing non-Poissonian fluctuations $\sigma_{NP}^2(N_A) = 2N_A^2(v_2^2 + v_3^2)$

• 'measured': from δp_{T} distributions

•
$$\sigma(\delta p_t^{v_n})$$
 from $\langle \rho_{ch} \rangle$

•
$$\sigma(\delta p_t^{v_n=0})$$
 from $\rho_{ch \ local}$

 $\rho_{ch \ local}$ gives expected reduction of flow contribution to the δp_T width

Redmer Alexander Bertens - December 14, 2015 - slide 19 of 18 Azimuthal anisotropy of R = 0.2 charged jet production

^{• &#}x27;expected' as above: from N_A and $\langle p_T \rangle$, etc.