Nikhef Jaarvergadering 2015 **15 December 2015** The highest energy cosmic rays: status and future perspectives

Jörg R. Hörandel

Radboud University Nijmegen/Nikhef

http://particle.astro.ru.nl

Nik

hef

The highest energy cosmic rays: status and future perspectives

Jörg R. Hörandel

Radboud University Nijmegen/Nikhef

Nikhef Jaarvergadering 2015 **15 December 2015**

LIMITE DE<u>(</u>L'ATMOS The highest energy cosmic rays: status and future perspectives

OBSERVATORY

Jörg R. Hörandel

Radboud University Nijmegen/Nikhef

Nikhef Jaarvergadering 2015 **15 December 2015**

Auger full-author list papers: 60 published (7 papers in 2015 two of them: PRD, editor suggestion: Highlight)

Year

Paper	submitted	Journal
The prototype the Pierre Aug	JINST	
The energy in	PRL	
Energy Estimat Radio Array of	PRD	
Nanosecond-le radio detector commercial ai	evel time synchronization of autonomous stations using a reference beacon and rplanes	JINST

n

Auger Top 10 (by citations, INSPIRE)

paper	# citations	rank in Journal
NIM 2004 (Engineering Array)	602	(2) after D0) #Dafte
Science 2007 (VCV)	549	2 after CDMS II)
PRL 2008 (spectrum)	481	22
PRL 2010 (X _{max})	425	17 82 citations last
APP 2008 (VCV)	362	61 citations last
PLB 2010 (spectrum)	318	9 (only Higgs & SUSY got
APP 2010 (VCV update)	261	()
NIM 2010 (Flouresc. Det.)	178	3 after ALICE, T2K)
APP 2008 (photons)	165	3 after Auger, Fermi-LAT
PRL 2008 (tau neutrinos)	148	199
Total number of citation	ns of Auge	er papers ~7
average of 83 citations	per pape	last year:1500

Compilation: K.-H. Kampert

Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

The IceCube, Pierre Auger and Telescope Array C

Abstract. This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size of the UHECR magnetic deflections. Finally, we perform another likelihood analysis stacking the UHECR directions and using a sample of through-going muon tracks optimized for neutrino point-source searches with sub-degree angular res-No indications of correlations at discovery level are obtained for any of the olution. searches performed. The smallest of the p-values comes from the search for correlation between UHECRs with IceCube high-energy cascades, a result that should continue to be monitored.

Keywords: Neutrino, UHECR, cosmic ray sources, magnetic deflection.

Figure 7. Maps in Equatorial and Galactic coordinates showing the arrival directions of the IceCube cascades (black dots) and tracks (diamonds), as well as those of the UHECRs detected by the Pierre Auger Observatory (magenta stars) and Telescope Array (orange stars). The circles around the showers indicate angular errors. The black diamonds are the HESE tracks while the blue diamonds stand for the tracks from the through-going muon sample. The blue curve indicates the Super-Galactic plane.

Precise measurementof the all-particle energy spectrum over 3 decades in energy

~200000 showers, ~50000 km2 sr yr exposure, FOV -90° < d < 25°

~200000 showers, ~50000 km2 sr yr exposure, FOV -90° < d < 25°

First measurement of the depth of shower maximum over 3 decades in energy

Depth of shower maximum is premiere observable for mass composition studies. HEAT data extend the FOV of the fluorescence detector up to 60°. Extension of the depth of shower maximum measurements down to 10¹⁷ eV.

Compared to prediction for protons and iron nuclei according to the hadronic interaction models EPOS-LHC, QGSJETII-04, Sybill2.1

First measurement of the depth of shower maximum over 3 decades in energy

Depth of shower maximum is premiere observable for mass composition studies. HEAT data extend the FOV of the fluorescence detector up to 60°. Extension of the depth of shower maximum measurements down to 10¹⁷ eV.

Compared to prediction for protons and iron nuclei according to the hadronic interaction models EPOS-LHC, QGSJETII-04, Sybill2.1

Std. Deviation of X_{max}

First measurement of the depth of shower maximum over 3 decades in energy

Depth of shower maximum is premiere observable for mass composition studies. HEAT data extend the FOV of the fluorescence detector up to 60°. Extension of the depth of shower maximum measurements down to 10¹⁷ eV.

relative distance "red/blue" is measure for In A (particle type)

Compared to prediction for protons and iron nuclei according to the hadronic interaction models EPOS-LHC, QGSJETII-04, Sybill2.1

Std. Deviation of X_{max}

From the depth of the shower maximum to the type of cosmic ray/mass (In A)

Similar trend for both models: heavier composition at low energies (largest mass dispersion), lightest In A at $\approx 2 \times 10^{18}$ eV, getting heavier again towards higher energies (smaller mass dispersion) [N.B: very few data above \approx 40 EeV)

Mass measurement and test of hadronic interaction models. The conversion to $\sigma^2(\ln A)$ using QGSJETII-04 yields unphysical results.

Stringent neutrino- and photon-flux limits at EeV energies

a complementary path to the future: Radio Emission in Air Showers

Mainly: Charge separation in geomagnetic field $\vec{E} \propto \vec{v} \times \vec{B}$

Theory predicts additional mechanisms:

excess of electrons in shower: charge excess

Superposition of emission due to Cherenkov effects in atmosphere

polarization of radio signal

geomagnetic

Askaryan

Radio emission pattern on ground is sensitive to

energy

total energy (integral) is sensitive to shower energy

see e.g.

- Auger PRL/PRD
- LOFAR, Nelles et al., JCAP 05 (2015) 018

particle type/Xmax

width of footprint sensitive to distance to Xmax

see e.g.

- LOFAR, Buitink et al., PRD 90 (2014) 082003

100

60

40

20

A. Nelles et al., Astroparticle Physics 60 (2015) 13

R&D for vertical polarization

relation between cosmic-ray energy and energy in radio emission (30 - 80 MHz)

E_{30-80} MHz = 15.8 MeV @ 10¹⁸ eV

Measurement of the depth of the shower maximum X_{max} with

electric field strength

arrrival time (shape of shower front)

pulse shape (frequency spectrum)

fit of simulations to data

fit of simulations to data

Johannes Schulz Radboud University Nijmegen

SD-FD energy calibration cuts:

Depth of the shower maximum (particle type)

whats next?

AERA is producing full-author list Auger papers

- time calibration paper (JINST)
- absolute energy scale of radio emission (PRL/PRD)
- technical description (NIM/JINST paper) in preparation

Probing the radio emission from air showers with polarization measurements A. Aab et al. (Pierre Auger Collaboration) Physical Review D 89 (2014) 052002 (arXiv:1402.3677)

Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory P. Abreu et al. (Pierre Auger Collaboration) JINST 7 (2012) P10011

Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory P. Abreu et al. (Pierre Auger Collaboration) Nuclear Instruments and Methods A 635 (2011) 92 (arXiv:1101.4473)

Results of a self-triggered prototype system for radio-detection of extensive air showers at the Pierre Auger Observatory S. Acounis et al. (Pierre Auger Collaboration) JINST 7 (2012) 11023

more to come ... e.g. promising Xmax analyses

Time to officially integrate AERA to the PAO! --> ORR during next Collaboration meeting!

The highest energy cosmic rays: status and future perspectives

Auger Observatory after 10 years of operation:

1. All-particle spectrum: flux suppression above \approx 40 EeV (GZK-reminiscent)

2. Trend towards a heavier composition at the highest energies. Spectrum and Xmax data together favor a scenario where the suppression is a source effect.

NEED FOR MASS COMPOSITION DATA IN THE SUPPRESSION REGION - ACCESSED BY THE SURFACE DETECTOR

Mass-related shower observables provide tight constraints on hadronic interaction models

NEED FOR MORE MASS-RELATED DATA FROM THE SURFACE DETECTOR

3. Stringent photon limits strongly disfavor exotic sources: astrophysical sources expected. But a high degree of (small-scale) isotropy observed.

NEED TO SELECT LIGHT CRs TO DO COSMIC-RAY ASTRONOMY

Jörg R. Hörandel

Radboud University Nijmegen/Nikhef

Nikhef Jaarvergadering 15 December 2015

Radio detection of air showers:

Successfull reconstruction of all cosmic-ray properties with the radio technique: 1. direction 2. energy 3. particle type/mass A NEW WINDOW TO MEASURE EXTENSIVE AIR SHOWERS.

To measure the CR mass is the key: NL group achieves this by **1. SD analysis** 2. SD upgrade (scintillation detectors) 3. radio measurements of air showers

http://particle.astro.ru.nl

