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• LHCb is participating for the first time:
– It wasn’t easy, the beginning was very bumpy

• Got flooded by EMD events, very high cross section 
– >20 times than PbPb x-section

• Still very much uncertainty in the luminosity x-section, probably
overestimating it by a factor 20 online

– But thanks to the great flexibility of the system (and huge help from experts), 
things got much better much faster

15
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Run 2 Data Taking

• During special LHC runs (van der Meer scans, high b* 
runs), data taking in fixed target mode:
– p (6.5 TeV) – Neon: 20h 
– p (6.5 TeV) – Helium: 20h 
– p (6.5 TeV) – Argon: 3 days
– p (2.51 TeV) – Argon: 9 h
– Pb (6.37Z TeV) – Argon: ongoing

• Aim at studying:
– Nuclear effects via heavy flavour probes,
– Anti-proton production cross-section in pHe, …
– This is widely regarded as an etremely promising technique 

at CERN and operationally we fully support it in all its flavors.
• “SMOG piquet“ every start and end of physics. 20
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“Success is a journey, 
not a destination.”

Arthur Ashe
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    ~ 1 MHz cc pairs produced 

Can only readout @ 1 MHz 
(must decide within 4 μs) 

Can only store O(10kHz)  
(decide using ~50K cores)
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Run I Trigger performance
I Trigger e�ciencies for selected channels:

Hadronic Dimuon Radiative
Mode D! hhh B! hh B+! J/ K+ B0!K⇤�
✏(L0) [%] 27 62 93 85
✏(HLT | L0) [%] 42 85 92 67
✏(HLT ⇥ L0) [%] 11 52 84 57

I Extremely pure samples after o✏ine selection:
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time-dependent γ

mass fit

select DsK and Dsπ (control channel) with same selection (BDT)

optimise S/B for DsK (data-driven)

split sample according to LHCb magnet polarity, Ds final state
(KKπ, Kππ, πππ)

→ simultaneous fit in six categories

about 28k Dsπ and 1.4k DsK events in the LHCb 2011 sample
with excellent S/B
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Large “dynamic range” 

Good trigger efficiencies 

…. except for charm  
…. but there is a lot of charm

Run 1 Performance
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• Energy: 8 TeV → 13 TeV  

+ σbb x 1.6 

- σinelastic  x 1.2 

- multiplicity x 1.2 

• Bunch spacing: 50 ns → 25 ns 

+ constant lumi → pileup / 2 

- 1 MHz L0/readout limit: 1/20 →  1/40 

- spillover



Run 2 Challenge
• Energy: 8 TeV → 13 TeV  

+ σbb x 1.6 

- σinelastic  x 1.2 

- multiplicity x 1.2 

• Bunch spacing: 50 ns → 25 ns 

+ constant lumi → pileup / 2 

- 1 MHz L0/readout limit: 1/20 →  1/40 

- spillover



Run 2 Challenge

Can we maintain 
improve 
performance 
under more 
challenging 
conditions?

• Energy: 8 TeV → 13 TeV  

+ σbb x 1.6 

- σinelastic  x 1.2 

- multiplicity x 1.2 

• Bunch spacing: 50 ns → 25 ns 

+ constant lumi → pileup / 2 

- 1 MHz L0/readout limit: 1/20 →  1/40 

- spillover



“The formulation of the problem is 
often more essential than its solution, 
which may be merely a matter of 
mathematical or experimental skill.” 

“To raise new questions, new 
possibilities, to regard old questions 
from a new angle requires creative 
imagination and marks real 
advances…” 

— Albert Einstein
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What is the problem?



Some things are not rare…
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Events are triggered by signatures consistent with a
hadronic charm decay. The hardware trigger demands a
hadronic energy deposition with a transverse component of
at least 3 GeV. Subsequent software-based triggers require
two oppositely-charged tracks to form a D0 candidate with
a decay vertex well separated from the associated primary
pp collision vertex (PV). Additional requirements on the
quality of the online-reconstructed tracks, their transverse
momenta (pT) and their impact parameters (IP), defined
as the distance of closest approach of the reconstructed
trajectory to the PV, are applied in the final stage of the
software trigger. For the offline analysis, only D0 candi-
dates selected by this trigger algorithm are considered.

The D0 daughter particles are both required to have
pT > 800 MeV=c, p > 5 GeV=c, and !2ðIPÞ> 9. The
!2ðIPÞ is defined as the difference between the !2 of the
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FIG. 1 (color online). Time-integratedD0"þ
s mass distributions for the selected RSD0 ! K%"þ (left) and WSD0 ! Kþ"% (right)

candidates with fit projections overlaid. The bottom plots show the normalized residuals between the data points and the fits.
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Observation ofD0 ! !D0 Oscillations
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We report a measurement of the time-dependent ratio of D0 ! Kþ!" to D0 ! K"!þ decay rates in

D#þ-tagged events using 1:0 fb"1 of integrated luminosity recorded by the LHCb experiment. We

measure the mixing parameters x02 ¼ ð"0:9& 1:3Þ ( 10"4, y0 ¼ ð7:2& 2:4Þ ( 10"3, and the ratio of

doubly-Cabibbo-suppressed to Cabibbo-favored decay rates RD ¼ ð3:52& 0:15Þ ( 10"3, where the

uncertainties include statistical and systematic sources. The result excludes the no-mixing hypothesis

with a probability corresponding to 9.1 standard deviations and represents the first observation ofD0 " !D0

oscillations from a single measurement.

DOI: 10.1103/PhysRevLett.110.101802 PACS numbers: 12.15.Ff, 13.25.Ft, 14.40.Lb

Meson-antimeson oscillations are a manifestation of
flavor changing neutral currents that occur because
the flavor eigenstates differ from the physical mass
eigenstates of the meson-antimeson system. Short-range
quark-level transitions as well as long-range processes
contribute to this phenomenon. The former are governed
by loops in which virtual heavy particles are exchanged,
making the study of flavor oscillations an attractive area
to search for physics beyond the standard model (SM).
Oscillations have been observed in the K0 " !K0 [1],
B0 " !B0 [2], and B0

s " !B0
s [3] systems, all with rates in

agreement with SM expectations. Evidence of D0 " !D0

oscillations has been reported by three experiments using
different D0 decay channels [4–8]. Only the combination
of these measurements provides confirmation of D0 " !D0

oscillations, also referred to as charm mixing, with more
than 5" significance [9]. While it is accepted that charm
mixing occurs, a clear observation of the phenomenon
from a single measurement is needed to establish it
conclusively.

Charm mixing is characterized by two parameters: the
mass and decay width differences, "m and "#, between
the two mass eigenstates expressed in terms of the dimen-
sionless quantities x ¼ "m=# and y ¼ "#=2#, where # is
the average D0 decay width. The charm mixing rate is
expected to be small, with predicted values of jxj, jyj &
Oð10"2Þ, including significant contributions from nonper-
turbative long-range processes that compete with the
short-range electroweak loops [10–13]. This makes the
mixing parameters difficult to calculate and complicates
the unambiguous identification of potential non-SM con-
tributions in the experimental measurements [14–16].

In the analysis described in this Letter, D0 " !D0 oscil-
lations are observed by studying the time-dependent ratio
of D0 ! Kþ!" to D0 ! K"!þ decay rates [17]. The D0

flavor at production time is determined using the charge
of the soft (low-momentum) pion, !þ

s , in the strong
D#þ ! D0!þ

s decay. The D#þ ! D0ð! K"!þÞ!þ
s pro-

cess is referred to as right-sign (RS), whereas the D#þ !
D0ð! Kþ!"Þ!þ

s is designated as wrong-sign (WS). The
RS process is dominated by a Cabibbo-favored (CF) decay
amplitude, whereas the WS amplitude includes contribu-
tions from both the doubly-Cabibbo-suppressed (DCS)
D0 ! Kþ!" decay, as well as D0 " !D0 mixing followed
by the favored !D0 ! Kþ!" decay. In the limit of small
mixing (jxj, jyj ) 1), and assuming negligible CP viola-
tion, the time-dependent ratio, R, of WS to RS decay rates
is approximated by [10]

RðtÞ * RD þ
ffiffiffiffiffiffiffi
RD

p
y0

t

#
þ x02 þ y02

4

"
t

#

#
2
; (1)

where t=# is the decay time expressed in units of the
average D0 lifetime #, RD is the ratio of DCS to CF decay
rates, x0 ¼ x cos$þ y sin$, y0 ¼ y cos$" x sin$, and $
is the strong phase difference between the DCS and CF
amplitudes.
The analysis is based on a data sample corresponding to

1:0 fb"1 of
ffiffiffi
s

p ¼ 7 TeV pp collisions recorded by LHCb
during 2011. The LHCb detector [18] is a single-arm
forward spectrometer covering the pseudorapidity range
2< %< 5, designed for the study of particles containing b
or c quarks. Detector components particularly relevant for
this analysis are the silicon Vertex Locator, which provides
identification of displaced, secondary vertices of b- and
c-hadron decays; the tracking system, which measures
charged particles with momentum resolution "p=p that
varies from 0.4% at 5 GeV=c to 0.6% at 100 GeV=c,
corresponding to a typical mass resolution of approxi-
mately 8 MeV=c2 for a two-body charm-meson decay;
and the ring imaging Cherenkov detectors, which provide
kaon-pion discrimination.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PRL 110, 101802 (2013)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
8 MARCH 2013

0031-9007=13=110(10)=101802(8) 101802-1 ! 2013 CERN, for the LHCb Collaboration

Observation ofD0 ! !D0 Oscillations

R. Aaij et al.*

(LHCb Collaboration)
(Received 6 November 2012; published 5 March 2013)

We report a measurement of the time-dependent ratio of D0 ! Kþ!" to D0 ! K"!þ decay rates in

D#þ-tagged events using 1:0 fb"1 of integrated luminosity recorded by the LHCb experiment. We

measure the mixing parameters x02 ¼ ð"0:9& 1:3Þ ( 10"4, y0 ¼ ð7:2& 2:4Þ ( 10"3, and the ratio of

doubly-Cabibbo-suppressed to Cabibbo-favored decay rates RD ¼ ð3:52& 0:15Þ ( 10"3, where the

uncertainties include statistical and systematic sources. The result excludes the no-mixing hypothesis

with a probability corresponding to 9.1 standard deviations and represents the first observation ofD0 " !D0

oscillations from a single measurement.

DOI: 10.1103/PhysRevLett.110.101802 PACS numbers: 12.15.Ff, 13.25.Ft, 14.40.Lb

Meson-antimeson oscillations are a manifestation of
flavor changing neutral currents that occur because
the flavor eigenstates differ from the physical mass
eigenstates of the meson-antimeson system. Short-range
quark-level transitions as well as long-range processes
contribute to this phenomenon. The former are governed
by loops in which virtual heavy particles are exchanged,
making the study of flavor oscillations an attractive area
to search for physics beyond the standard model (SM).
Oscillations have been observed in the K0 " !K0 [1],
B0 " !B0 [2], and B0

s " !B0
s [3] systems, all with rates in

agreement with SM expectations. Evidence of D0 " !D0

oscillations has been reported by three experiments using
different D0 decay channels [4–8]. Only the combination
of these measurements provides confirmation of D0 " !D0

oscillations, also referred to as charm mixing, with more
than 5" significance [9]. While it is accepted that charm
mixing occurs, a clear observation of the phenomenon
from a single measurement is needed to establish it
conclusively.

Charm mixing is characterized by two parameters: the
mass and decay width differences, "m and "#, between
the two mass eigenstates expressed in terms of the dimen-
sionless quantities x ¼ "m=# and y ¼ "#=2#, where # is
the average D0 decay width. The charm mixing rate is
expected to be small, with predicted values of jxj, jyj &
Oð10"2Þ, including significant contributions from nonper-
turbative long-range processes that compete with the
short-range electroweak loops [10–13]. This makes the
mixing parameters difficult to calculate and complicates
the unambiguous identification of potential non-SM con-
tributions in the experimental measurements [14–16].

In the analysis described in this Letter, D0 " !D0 oscil-
lations are observed by studying the time-dependent ratio
of D0 ! Kþ!" to D0 ! K"!þ decay rates [17]. The D0

flavor at production time is determined using the charge
of the soft (low-momentum) pion, !þ

s , in the strong
D#þ ! D0!þ

s decay. The D#þ ! D0ð! K"!þÞ!þ
s pro-

cess is referred to as right-sign (RS), whereas the D#þ !
D0ð! Kþ!"Þ!þ

s is designated as wrong-sign (WS). The
RS process is dominated by a Cabibbo-favored (CF) decay
amplitude, whereas the WS amplitude includes contribu-
tions from both the doubly-Cabibbo-suppressed (DCS)
D0 ! Kþ!" decay, as well as D0 " !D0 mixing followed
by the favored !D0 ! Kþ!" decay. In the limit of small
mixing (jxj, jyj ) 1), and assuming negligible CP viola-
tion, the time-dependent ratio, R, of WS to RS decay rates
is approximated by [10]

RðtÞ * RD þ
ffiffiffiffiffiffiffi
RD

p
y0

t

#
þ x02 þ y02

4

"
t

#

#
2
; (1)

where t=# is the decay time expressed in units of the
average D0 lifetime #, RD is the ratio of DCS to CF decay
rates, x0 ¼ x cos$þ y sin$, y0 ¼ y cos$" x sin$, and $
is the strong phase difference between the DCS and CF
amplitudes.
The analysis is based on a data sample corresponding to

1:0 fb"1 of
ffiffiffi
s

p ¼ 7 TeV pp collisions recorded by LHCb
during 2011. The LHCb detector [18] is a single-arm
forward spectrometer covering the pseudorapidity range
2< %< 5, designed for the study of particles containing b
or c quarks. Detector components particularly relevant for
this analysis are the silicon Vertex Locator, which provides
identification of displaced, secondary vertices of b- and
c-hadron decays; the tracking system, which measures
charged particles with momentum resolution "p=p that
varies from 0.4% at 5 GeV=c to 0.6% at 100 GeV=c,
corresponding to a typical mass resolution of approxi-
mately 8 MeV=c2 for a two-body charm-meson decay;
and the ring imaging Cherenkov detectors, which provide
kaon-pion discrimination.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PRL 110, 101802 (2013)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
8 MARCH 2013

0031-9007=13=110(10)=101802(8) 101802-1 ! 2013 CERN, for the LHCb Collaboration

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html


“The problem is not the problem. 
  The problem is your attitude  
                      about the problem”



Offline → Online!
• Do “Online” what used to be 

done “Offline” 

• Calibrate in “Real Time” 

• Run offline reconstruction 
online 

• Skip offline reconstruction / 
skimming  

• Don’t store events / information 
that you won’t really use…



40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

29000 Logical CPU cores

Offline reconstruction tuned to trigger 
time constraints

Mixture of exclusive and inclusive 
selection algorithms

2 kHz 
Inclusive

Topological

5 kHz Rate to storage
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Inclusive/
Exclusive 

Charm

1 kHz
Muon and 
DiMuon

Trigger Evolution
• 2011: increased bandwidth  

• 2 kHz → 5 kHz to accommodate charm 

• 29K CPU cores 

• 2012: add deferred triggering to utilize farm 
between fills 

• 20% deferral → 25% extra capacity 

• 2015: split HLT 

• 50K CPU cores 

• buffer full HLT1 output (150 kHz) to 5PB of disk 

• HLT2 uses “offline quality” calibrations

LHCb 2011
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Trigger Evolution
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40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz Rate to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger DiagramLHCb 2015



 Software Improvements
• Equivalent to ‘a few MCHF’ of hardware 

• Unified online and offline reconstruction! 

• PT threshold: 1.3 GeV/c → 0.5 GeV/c 

• Drop (IP | muon match) requirement in 
HLT1 

• εHLT(charm): +50% 

• εHLT(B+ → D0π+):  +20%  (75% → 90%)

Run 2 software  
Run 2 configuration

2012 data

2012 data: Event loop

v45r1 v48r1 v48r1 (2015 reco)

overall 34% speedup in Brunel for 2012 data with old tracking

factor 2 speedup in Brunel for 2012 data with 2015 tracking
big speedups in software mean one gains time e.g. in HLT

HLT can become qualitatively better!
(e.g. offline quality reco in HLT, inclusion of PID in HLT2)

faster and better means more physics output

M. Schiller (CERN) profiling progress (update) October 1st, 2015 6 / 42
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Run 1 software  
Run 1 configuration

Area ∝ cycle count

“Start where you are. Use what you have. 
Do what you can.” — Arthur Ashe
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εHLT(B+->D0π+) ~ 90%

εHLT(B+->D0π+) ~ 75%

Performance: Run 1 vs. Run 2



“Turbo” Output
• Online reconstruction == Offline 

reconstruction 

• Online calibration == Offline calibration 

• Turbo:  store Trigger Data only 

• For a given bandwidth, increases the 
event rate by an order of magnitude 

• Ideal for high-yield analysis 

• 185 out of 374 HLT2 selections go to “Turbo”

⇓

•  Events%from%lower%trigger%
levels%can%be&buffered&on&
disk&while&performing&
realQGme&alignment&and&
calibraGon&

•  Last%trigger%level%uses%the%
same&reconstrucGon&as%
offline%

•  Same&alignment&and&
calibraGon&constants&
used%by%the%trigger%and%
the%offline%reconstruc3on%

•  Some%analysis%performed%
directly%on%the%trigger%
output%

Trigger in RunII 

18%Barbara%Storaci,%University%of%Zurich%



“Turbo” CharmCharm from first July 2015 run
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Hardly any background

The yields per pb are much larger than in Run I (and that’s
mostly the trigger)

Patrick Koppenburg LHCb news from Run II 29/7/2015 — EPS-HEP [12 / 50]



Measurements of prompt charm
production cross-sections in pp

collisions at
p
s = 13TeV

The LHCb collaboration†

Abstract

Production cross-sections of prompt charm mesons are measured with the first data
from pp collisions at the LHC at a centre-of-mass energy of 13 TeV. The data sample
corresponds to an integrated luminosity of 4.98 ± 0.19 pb�1 collected by the LHCb
experiment. The production cross-sections of D0, D+, D+

s

, and D⇤+ mesons are
measured in bins of charm meson transverse momentum, p

T

, and rapidity, y, and
cover the range 0 < p

T

< 15 GeV/c and 2.0 < y < 4.5. The ratios of the integrated
cross-sections between charm mesons agree with previously measured fragmentation
fractions. The inclusive cc cross-section within the range of 0 < p

T

< 8 GeV/c is
found to be

�(pp ! ccX) = 2940 ± 3 ± 180 ± 160 µb,

where the uncertainties are due to statistical, systematic and fragmentation fraction
uncertainties, respectively.

ar
X

iv
:1

51
0.

01
70

7v
1 

 [h
ep

-e
x]

  6
 O

ct
 2

01
5



Prepared for submission to JHEP

OUTP-15-26P

DCPT/15/128

IPPP/15/64

The prompt atmospheric neutrino flux in the light of

LHCb

Rhorry Gauld,a Juan Rojo,b Luca Rottoli,b Subir Sarkarb,c and Jim Talbertb

aInstitute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, UK
bRudolf Peierls Centre for Theoretical Physics, 1 Keble Road, University of Oxford, OX1 3NP
Oxford, UK

cNiels Bohr International Academy, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen,
Denmark

E-mail: rhorry.gauld@durham.ac.uk, juan.rojo@physics.ox.ac.uk,

luca.rottoli@physics.ox.ac.uk, subir.sarkar@physics.ox.ac.uk,

jim.talbert@physics.ox.ac.uk

Abstract: The recent observation of very high energy cosmic neutrinos by IceCube heralds

the beginning of neutrino astronomy. At these energies, the dominant background to the

astrophysical signal is the flux of ‘prompt’ neutrinos, arising from the decay of charmed

mesons produced by cosmic ray collisions in the atmosphere. In this work we provide

predictions for the prompt atmospheric neutrino flux in the framework of perturbative

QCD, using state-of-the-art Monte Carlo event generators. Our calculation includes the

constraints set by charm production measurements from the LHCb experiment at 7 TeV,

recently validated with the corresponding 13 TeV data. Our result for the prompt flux is

a factor of about 2 below the previous benchmark calculation, in general agreement with

other recent estimates, but with an improved estimate of the uncertainty. This alleviates

the existing tension between the theoretical prediction and IceCube limits, and suggests

that a direct direction of the prompt flux is imminent.

Keywords: Neutrino Telescopes, Atmospheric Neutrinos, QCD Phenomenology

ArXiv ePrint: 1511.06346

ar
X

iv
:1

51
1.

06
34

6v
2 

 [h
ep

-p
h]

  2
3 

N
ov

 2
01

5



J/ production in
p
s = 13TeV data

LHCb-PAPER-2015-037,
R
Ldt = 3.05 ± 0.12 pb�1

Motivation:

Test QCD in both the perturbative (qq production) and non-perturbative
(qq hadronisation) regimes

Provide reliable estimates for B physics prospects in the coming 13TeV run.

The first LHCb analysis using online reconstruction

]2c [MeV/ -µ+µm
2950 3000 3050 3100 3150 3200

2 c
C

an
di

da
te

s p
er

 5
 M

eV
/

2

4

6

8

10

12

310×

-1 =3.05 pbintL = 13 TeV, s
LHCb

c < 3 GeV/
T

p2 < 
 < 3.5y3 < 

 [ps]zt
-10 -8 -6 -4 -2 0 2 4 6 8 10

C
an

di
da

te
s p

er
 0

.2
 p

s

1

10

210

310

410

510 -1 =3.05 pbintL = 13 TeV, s
LHCb

c < 3 GeV/
T
p2 < 
 < 3.5y3 < 

Data
Total fit

b-from-ψJ/
ψPrompt J/

Wrong PV
Background

J/ ! µ+µ� invariant mass
Signal yield: ⇠ 106 events

Prompt and secondary (from B) J/ 
are distinguished using decay time
distribution.

Anton Poluektov LHCb highlights LHCP 2015, St. Petersburg, Russia, 31 August – 4 September 2015 7/20

J/ production in
p
s = 13TeV data

LHCb-PAPER-2015-037,
R
Ldt = 3.05 ± 0.12 pb�1

Motivation:

Test QCD in both the perturbative (qq production) and non-perturbative
(qq hadronisation) regimes

Provide reliable estimates for B physics prospects in the coming 13TeV run.

The first LHCb analysis using online reconstruction

]2c [MeV/ -µ+µm
2950 3000 3050 3100 3150 3200

2 c
C

an
di

da
te

s p
er

 5
 M

eV
/

2

4

6

8

10

12

310×

-1 =3.05 pbintL = 13 TeV, s
LHCb

c < 3 GeV/
T

p2 < 
 < 3.5y3 < 

 [ps]zt
-10 -8 -6 -4 -2 0 2 4 6 8 10

C
an

di
da

te
s p

er
 0

.2
 p

s

1

10

210

310

410

510 -1 =3.05 pbintL = 13 TeV, s
LHCb

c < 3 GeV/
T
p2 < 
 < 3.5y3 < 

Data
Total fit

b-from-ψJ/
ψPrompt J/

Wrong PV
Background

J/ ! µ+µ� invariant mass
Signal yield: ⇠ 106 events

Prompt and secondary (from B) J/ 
are distinguished using decay time
distribution.

Anton Poluektov LHCb highlights LHCP 2015, St. Petersburg, Russia, 31 August – 4 September 2015 7/20

J
H
E
P
1
0
(
2
0
1
5
)
1
7
2

Published for SISSA by Springer

Received: September 3, 2015

Accepted: October 5, 2015

Published: October 26, 2015

Measurement of forward J/ψ production

cross-sections in pp collisions at
√
s = 13TeV

The LHCb collaboration

E-mail: yanxi.zhang@cern.ch

Abstract: The production of J/ψ mesons in proton-proton collisions at a centre-of-mass

energy of
√
s = 13TeV is studied with the LHCb detector. Cross-section measurements

are performed as a function of the transverse momentum pT and the rapidity y of the

J/ψ meson in the region pT < 14GeV/c and 2.0 < y < 4.5, for both prompt J/ψ mesons

and J/ψ mesons from b-hadron decays. The production cross-sections integrated over the

kinematic coverage are 15.30 ± 0.03 ± 0.86µb for prompt J/ψ and 2.34 ± 0.01 ± 0.13µb

for J/ψ from b-hadron decays, assuming zero polarization of the J/ψ meson. The first

uncertainties are statistical and the second systematic. The cross-section reported for J/ψ

mesons from b-hadron decays is used to extrapolate to a total bb̄ cross-section. The ratios

of the cross-sections with respect to
√
s = 8TeV are also determined.

Keywords: Hadron-Hadron Scattering

ArXiv ePrint: 1509.00771

Open Access, Copyright CERN,

for the benefit of the LHCb Collaboration.

Article funded by SCOAP3.

doi:10.1007/JHEP10(2015)172

J
H
E
P
1
0
(
2
0
1
5
)
1
7
2

Published for SISSA by Springer

Received: September 3, 2015

Accepted: October 5, 2015

Published: October 26, 2015

Measurement of forward J/ψ production

cross-sections in pp collisions at
√
s = 13TeV

The LHCb collaboration

E-mail: yanxi.zhang@cern.ch

Abstract: The production of J/ψ mesons in proton-proton collisions at a centre-of-mass

energy of
√
s = 13TeV is studied with the LHCb detector. Cross-section measurements

are performed as a function of the transverse momentum pT and the rapidity y of the

J/ψ meson in the region pT < 14GeV/c and 2.0 < y < 4.5, for both prompt J/ψ mesons

and J/ψ mesons from b-hadron decays. The production cross-sections integrated over the

kinematic coverage are 15.30 ± 0.03 ± 0.86µb for prompt J/ψ and 2.34 ± 0.01 ± 0.13µb

for J/ψ from b-hadron decays, assuming zero polarization of the J/ψ meson. The first

uncertainties are statistical and the second systematic. The cross-section reported for J/ψ

mesons from b-hadron decays is used to extrapolate to a total bb̄ cross-section. The ratios

of the cross-sections with respect to
√
s = 8TeV are also determined.

Keywords: Hadron-Hadron Scattering

ArXiv ePrint: 1509.00771

Open Access, Copyright CERN,

for the benefit of the LHCb Collaboration.

Article funded by SCOAP3.

doi:10.1007/JHEP10(2015)172



J
H
E
P
1
0
(
2
0
1
5
)
1
7
2

Published for SISSA by Springer

Received: September 3, 2015

Accepted: October 5, 2015

Published: October 26, 2015

Measurement of forward J/ψ production

cross-sections in pp collisions at
√
s = 13TeV

The LHCb collaboration

E-mail: yanxi.zhang@cern.ch

Abstract: The production of J/ψ mesons in proton-proton collisions at a centre-of-mass

energy of
√
s = 13TeV is studied with the LHCb detector. Cross-section measurements

are performed as a function of the transverse momentum pT and the rapidity y of the

J/ψ meson in the region pT < 14GeV/c and 2.0 < y < 4.5, for both prompt J/ψ mesons

and J/ψ mesons from b-hadron decays. The production cross-sections integrated over the

kinematic coverage are 15.30 ± 0.03 ± 0.86µb for prompt J/ψ and 2.34 ± 0.01 ± 0.13µb

for J/ψ from b-hadron decays, assuming zero polarization of the J/ψ meson. The first

uncertainties are statistical and the second systematic. The cross-section reported for J/ψ

mesons from b-hadron decays is used to extrapolate to a total bb̄ cross-section. The ratios

of the cross-sections with respect to
√
s = 8TeV are also determined.

Keywords: Hadron-Hadron Scattering

ArXiv ePrint: 1509.00771

Open Access, Copyright CERN,

for the benefit of the LHCb Collaboration.

Article funded by SCOAP3.

doi:10.1007/JHEP10(2015)172

J
H
E
P
1
0
(
2
0
1
5
)
1
7
2

Published for SISSA by Springer

Received: September 3, 2015

Accepted: October 5, 2015

Published: October 26, 2015

Measurement of forward J/ψ production

cross-sections in pp collisions at
√
s = 13TeV

The LHCb collaboration

E-mail: yanxi.zhang@cern.ch

Abstract: The production of J/ψ mesons in proton-proton collisions at a centre-of-mass

energy of
√
s = 13TeV is studied with the LHCb detector. Cross-section measurements

are performed as a function of the transverse momentum pT and the rapidity y of the

J/ψ meson in the region pT < 14GeV/c and 2.0 < y < 4.5, for both prompt J/ψ mesons

and J/ψ mesons from b-hadron decays. The production cross-sections integrated over the

kinematic coverage are 15.30 ± 0.03 ± 0.86µb for prompt J/ψ and 2.34 ± 0.01 ± 0.13µb

for J/ψ from b-hadron decays, assuming zero polarization of the J/ψ meson. The first

uncertainties are statistical and the second systematic. The cross-section reported for J/ψ

mesons from b-hadron decays is used to extrapolate to a total bb̄ cross-section. The ratios

of the cross-sections with respect to
√
s = 8TeV are also determined.

Keywords: Hadron-Hadron Scattering

ArXiv ePrint: 1509.00771

Open Access, Copyright CERN,

for the benefit of the LHCb Collaboration.

Article funded by SCOAP3.

doi:10.1007/JHEP10(2015)172

J
H
E
P
1
0
(
2
0
1
5
)
1
7
2

]c) [GeV/ψJ/(
T

p
0 5 10

)
T

p
/d

σ
(d

1
3

/8
R

0

1

2

3

 = 8 TeV cross-section ratios = 13 TeV/s
LHCb

LHCb

NRQCD

]c) [GeV/ψJ/(
T

p
0 5 10

)
T

p
/d

σ
(d

1
3

/8
R

0

1

2

3
 = 8 TeV cross-section ratios = 13 TeV/s

LHCb

LHCb

FONLL

Figure 9. Ratios of differential cross-sections between measurements at
√
s = 13TeV and

√
s =

8TeV as a function of pT integrated over y for (left) prompt J/ψ mesons and (right) J/ψ -from-b
mesons. Calculations of NRQCD [64] and FONLL [63] are compared to prompt J/ψ mesons and
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Figure 10. The J/ψ production cross-section for (left) prompt J/ψ and (right) J/ψ -from-b mesons
as a function of pp collision energy in the LHCb fiducial region compared to the FONLL calcu-
lation [27]. In general, the correlated and uncorrelated systematic uncertainties among different
measurements are of comparable magnitude.

uncertainties for the absolute production cross-section prediction. The FONLL calcula-

tion [27] is compared to the measurements of the J/ψ -from-b cross-section as a function of

transverse momentum integrated over y in the range 2.0 < y < 4.5 in figure 11 (right). The

FONLL calculation includes the uncertainties due to the b-quark mass and the renormali-

sation and factorisation scales for the prediction of the absolute production cross-section.

Good agreement is found between the measurements and the theoretical calculations.

Figure 8 (right) shows the ratio of the cross-sections as a function of y integrated over

pT in the range pT < 14GeV/c is compared with the FONLL calculation based on ref. [63]

for J/ψ -from-b. The ratio of the cross-sections as a function of pT integrated over y in the

range 2.0 < y < 4.5 is compared with the NRQCD calculation [64] for prompt J/ψ mesons,

and with predictions by FONLL based on ref. [63] for J/ψ -from-b, shown in figure 9. The

uncertainty of the NRQCD prediction, considering only that from LDME, almost cancels

– 15 –
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Take what ye can! 
— Jack Sparrow



“The Journey of a thousand 
miles begins with a single step”

— Lao Tzu





“If you cannot 
explain it 

simply, you do 
not understand 
it well enough” 

— Albert Einstein



D0 mixing

d,s,b ‘in the loop’ instead of u,c,t
⇒ GIM (almost) kills this amplitude...
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What needs to be improved?
• Tracking: 

• faster/better algorithms 

• More CPU time 

• Real-time calibration 

• Particle ID: 

• Faster algorithms 

• More CPU time  

• Real-time calibration
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I Very e�cient on fully hadronic B decays
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Example: 4-body B decay, minv and mcorr  for 2, 3 and 4 body selections

minv minv minv
mcorrmcorr mcorr

HLT2   
4-body

HLT2   
3-body

HLT2   
2-body
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How pure is the Topo?
I Rates of O (10 kHz) sound trifling
I But these are pure bb signal:

I Above even loose BBDT values data is consistent with inclusive bb MC
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Topological N�body lines
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I Inclusive trigger on 2,3,4-body detached vertices
[LHCb-PUB-2011-016]

I Primary trigger for B decays to charged tracks

I Uses modified BDT algorithm [JINST 8 (2013)

P02013]

I BDT inputs: pT, IP�2, Flight distance �2, mass and
mcorr, corrected mass:

mcorr =
p

m2 + |pTmiss|2 + |pTmiss|
I pTmiss: missing momentum transverse to flight

direction

I Very e�cient on fully hadronic B decays
10 / 23

Topological N-body Triggers
• Utilizes excellent vertex and 

momentum resolution to compute: 

• Uses a dedicated “Bonzai” 
Boosted Decision Tree [JINST 8 
(2013) P02013 ] with 

• PT, IP𝝌2, FD𝝌2, minv, mcorr 

• Capable of filling its allotted 
bandwidth with ~100% pure 
generic bb events

m
corr

⌘
q

m2

inv

+ |PT
miss

|2 + |PT
miss

|



• Same principle as Run 1  : 
preselect displaced tracks with ∑ 
PT, followed by BBDT 

• Timing: <0.1 ms (*) 

• At 25-50 kHz output rate, large 
efficiency gains over Run 1 

• red:          run 1 efficiency 

• green: 2x run 1 efficiency 

• LHCb-PUB-2014-031
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(*) on our  2011 reference machine: Intel X5650 (Westmere) @ 2.67 GHz

The Upgrade Trigger



First Stage of the High Level Trigger
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• Reconstruct all Velo tracks and perform PV finding
• Tracks with large IP or matched to a L0 muon are “upgraded”

… measure momentum using tracking stations after the magnet
Tim Head (CERN) Performance of the LHCb trigger and its upgrade 1 March 2014 11

Algorithm Optimizations

• HLT1 adds tracking in VErtex 
LOcator (VELO) and primary vertex 
reconstruction

The LHCb Trigger
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Run I HLT1 forward tracking

I Forward tracking looks for corresponding hits in IT & OT
I pT dependent search windows for single muon, dimuon and high-pT track

categories:
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I HLT1 e�ciencies vs. pT [JINST 8 (2013) P04022]
I left: B+! J/ K+ candidates with HLT1 muon triggers
I right: Hadronic modes
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• VELO tracks, either matched to 
muon hits, or with large IP are 
extended through the magnet  

• PT dependent search windows:
Really bad 
for charm 
physics

LHCb detector 2008 JINST 3 S08005
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First Stage of the High Level Trigger

• Reconstruct all Velo tracks and perform PV finding
• Tracks with large IP or matched to a L0 muon are “upgraded”

… measure momentum using tracking stations after the magnet
Tim Head (CERN) Performance of the LHCb trigger and its upgrade 1 March 2014 11
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