Mass composition measurement with the Auger Surface Detector

and

Upgrade of the Pierre Auger Observatory: AugerPrime

Guus van Aar

Nikhef Jamboree 15 December 2015

Sources and acceleration mechanisms?

 $\hat{\mathbf{n}}$

Nucleus

Mass composition !?

Proton

Photon

Propagation? Mass composition !?

Neutrino Interactions? Mass composition !

How to measure cosmic ray mass composition?

Heavy CRs (Iron) interact earlier and showers develop faster

 \Rightarrow Earlier at maximum shower size

Proton

Iron

How to measure cosmic ray mass composition?

Heavy CRs (Iron) interact earlier and showers develop faster

 \Rightarrow Earlier at maximum shower size

GZK region:

Surface detector observables

Calibration

 Use data measured by both detectors to calibrate Sd parameter S versus distance to shower maximum DX

$$DX = \frac{X(H_{ground})}{\cos\theta} - X_{max}$$

- And fit with

$$DX = a + b(S + c\log_{10}(\frac{E}{\text{EeV}})).$$

Radius of curvature

Rise time

X_{max} measured with the SD

Mass measurement with the SD: Result and conclusions

GvA, PhD thesis

Mass measurement with the SD: Result and conclusions

-Three more data points at high E -Measurement cuts into GZK-limit

-A break of the trend towards Iron -Heavier mass composition above 40 EeV excluded at 2σ

GvA, PhD thesis

Upgrade of the Pierre Auger Observatory: AugerPrime

Auger Upgrade: Science case

Auger Upgrade: Science case Deflection in magnetic field

Upgrade of the Auger Observatory

Goal:

- Get mass composition measurement in the GZK region
- Be able to detect a 10% proton flux in the GZK region
- Get mass composition per event
- To know the beam at the highest energy interactions

This requires 10x more data with a mass measurement

Upgrade of the Auger Observatory

Goal:

- Get mass composition measurement in the GZK region
- Be able to detect a 10% proton flux in the GZK region
- Get mass composition per event
- To know the beam at the highest energy interactions

This requires 10x more data with a mass measurement

Means:

- Upgrade SD array
- Measure muon content of showers

Upgrade of the Surface Detector

Practical implementation

Frame

Two modules in one box per station, read out by one PMT, area $\sim 4m^2$

187 cm

Read out of scintillators with WLS fibers

Both WCD and SSD will be connected to new 120MHz electronics

The design is finalized in Nikhef, Lecce and Karlsruhe

Timeline for AugerPrime

Now	- Mar 2016	Construction of engineering array
Mar 2016	5 - Jun 2016	Shipment to Argentina
Jul 2016		Installation of engineering array
Jul 2016	- Oct 2016	Operation & analysis of engineering array
Nov 2016	3	Production Readiness Review
Jan 2017	- Dec 2018	Construction and installation of full array
Jan 2017	- Dec 2024	Data taking with AugerPrime

Discovery potential of AugerPrime

CR sources!

Significance of discovering a 10% proton flux

Resolution of upgraded SD

