

Contents

- 1. Preparing for implementation
- 2. Performance & Operations

LISA Mission Concept

Cluster of 3 spacecraft in heliocentric orbit

Trailing or Leading the Earth by 20° (50 million kilometres)

Equilateral **triangle** with 2.5 million kilometres arm length

Inclined with respect to the ecliptic by 60°

LISA Mission Concept

Pre- Launch	LEOP, NECR, Transfer	Commissioning	NSP	Disposal		
	1.5 year	3 months	4.5 years	1 week		
6,25 years						

POWER	~2.3 kW in Science Mode Bus voltage @ 28V
MASS	~8300 Kg Launch Mass 2400 kg dry mass per spacecraft (plus adapter / dispenser and propellant)
COMMUNICATION	~270 kbits/s data rate X band (deep space) via steerable HGA 8 hour/day to 35m ESA Ground Stations
PROPULSION (TRANSFER)	1.5 kW Hall-Effect Xenon Thrusters
DRAG FREE AND ATTITUDE CONTROL	Cold gas (Nitrogen) micro-Newton thrusters (heritage GAIA, LPF, Microscope, Euclid) 3-axis stabilized

An International Co-operation

12 Member States and NASA

From Adoption to Build-up of LISA project

CFI Teams

LISA Payload Short-Term Plan

→ THE EUROPEAN SPACE AGENCY

LISA Project team

LISA: Key features and measurement principle

Ensuring Performance: requirements flow-down

Top-level performance break-down

- Performance contributors are grouped in three main areas:
- Optical Metrology Noises
 - "Local" noise in interferometers, mostly driven by IDS hardware
- Test Mass Residual Free-Fall noises
 - Noises local to a single SC that disturb the TM in its free-fall
- Post-processing Residuals
 - Couplings of system noises that couple when we form the constellation in post-processing

10000 <u>OMS</u>	20000 Free-Fall	30000 Post-processing
11000 <u>SCI IFO</u>	21000 Actuation	31000 Residual TTL
12000 <u>TM IFO</u>	22000 Magnetics	32000 Frequency Noise Residuals
13000 <u>REF IFO</u>	23000 Stray Electrostatics	33000 MOSA Longitudinal Jitter
14000 TM-REF IFO	24000 TM-SC/MOSA Couplings	34000 Timing Noise Residuals
15000 Thermo-mechanical OPL	25000 <u>Temperature</u>	
16000 <u>TTL</u>	26000 Gravitational	
	27000 <u>Brownian Noise</u>	
	28000 <u>Laser Radiation Pressure</u>	

Free-fall budget and requirements

Top-down budgets – bottom-up modelling

Setting and updating performance budgets

Setting and updating performance budgets

Exercise in information management!

- Need to cycle through everything whenever anything significant happens:
 - Test results
 - Design changes
 - Major reviews
 - Etc
- Common pool of parameters also needed for science ground segment development (simulators, etc)

Who's doing all that stuff?

And who do they work with?

Core Tasks & Products

Performance Verification

Requirements

Mission Reviews

Commissioning

Science Operations

Related technical documentation

LISA
Performance
Model

Related System Budgets

Best and Worst Case performance

All parameters have best and worst case values tracked

Next steps...

- Performance budget and models will undergo a project-level review at end of 2024
 - This will set the baseline to start co-engineering phase with the selected prime contractor
- As part of this we will also establish:
 - A Verification & Validation plan
 - How we will validate the models and build performance confidence through hardware verification
 - A Risk management plan
 - Configuration control plan (parameters, models, baseline releases, etc)

Thanks!

...and Go LISA!