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The decay of a metastable state (false vacuum) plays an important role in many branches of physics, 
including particle physics and cosmology.
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In the present-day Universe, the decay probability is small enough. 
But this can change in extreme environments.

Bubble wall moving through plasma generates baryon number

for reviews see Espinosa et al, 1505.04825
Andreassen et al, 1604.06090

— first experimental result

for review see Bodeker, Buchmuller, 2009.07294

see, e.g., Caprini et al, 1910.13125

https://www.nature.com/nphys


Euclidean — equilibrium — approach
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Gibbs 1875 — first discussion of the critical bubble, its energy in the thin-wall approximation

Wigner 1937 — Transition State Method for chemical reactions: saddle point, negative mode, zero modes

Langer 1969 — Classical-statistical theory of metastability: many d.o.f. + external heat bath

Affleck 1980 — Quantum-statistical theory of metastability: 1 d.o.f., no external heat bath

Studies of decay of metastable state have more than a century long history.

Milestones:

Linde 1982 — Decay of false vacuum at finite temperature: field theory, different regimes

We are interested in the developments in the context of high-energy physics, field theory.

It applies to systems whose metastable state is in local equilibrium — it can be assigned a temperature.
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True vacuum  
region

(ground) 
metastable state

Consider the quantum-mechanical system with the Hamiltonian  and the “tunnelling” potential.H =
p2

2m
+ V(q)

— classical equation of motion in the “imaginary” time τ

— boundary conditions selecting the bounce

 

— decay rate in the WKB approximation

— suppression exponent

Classical particle moves  
along the bounce trajectory

Classical 
ground state

Decay of metastable state 4

Psurv = 1 − e−Γt

Γ ∼ e−B

B = 2∫
a

0
dq 2mV(q)

SE = ∫ dτ [ m
2 ( dq

dτ )
2

+ V(q)]
m

d2q
dτ2

= −
∂(−V )

∂q

qb(±∞) = 0 , ·qb(0) = 0

— survival probability in the metastable state
at times not very short and not very long

it shows the main exponential suppression; 
we will talk about the prefactor later

 Interestingly, , where  is the bounce trajectory.B = SE[qb] qb

— Euclidean action associated with H

they are uniquely associated with the false vacuum state

So one can solve Newton’s equation instead of the Schrödinger equation!

Price to pay: WKB approximation; vacuum boundary conditions.
not relevant here, but for non-equilibrium states…



Coleman 77; Callan, Coleman 77

Classical 
ground state

Tunnelling from the 
ground state

Euclidean 
domain

Real-time 
domain
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Consider the scalar field theory with the Lagrangian  and the “tunnelling” potential.L = −
1
2

(∂μϕ)2 − V(ϕ)
in the configuration space

Again, , where  is the decay rate per unit space.Psurv = 1 − e−Γt Γ ∼ e−Bt 

Again, , where  is the Euclidean action associated with :B = SE[ϕb] SE L

SE =
1
g2 ∫ d ⃗x dτ

1
2 ( ∂ϕ

∂τ )
2

+
1
2 ( ∂ϕ

∂xi )
2

+ V(ϕ)

small coupling constant justifying WKB; in QM it is ℏp′￼/p2

The bounce is found by solving the (classical) Klein-Gordon equation 
 in the “imaginary” time.(∂2

τ + ∂i∂i)ϕ − V′￼(ϕ) = 0

 Again, one needs to know the boundary conditions.

ϕb(r → ∞) = 0 , r = τ2 + ⃗x 2

Bubble of true vacuum

Assuming spherical symmetry of the bubble,

So one can solve the KG equation instead of the (infinite-
dimensional) Schrödinger equation!

Price to pay…
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Consider the scalar field theory with the Lagrangian  and the “tunnelling” potential.L = −
1
2

(∂μϕ)2 − V(ϕ)
in the configuration space

As usual, , , where  is the thermal bounce.Γ ∼ e−B B = SE[ϕb] ϕb

 Boundary conditions for the thermal bounce? Thermal partition function implies 
periodicity in the imaginary time.

Tunnelling from an 
excited state

Consider tunnelling from a thermally excited metastable state, with temperature .T

The temperature should not be too high — Boltzmann suppression

Linde 82 
Brown, Weinberg 07

Γ ∼ ∫ dE e− E
T e−SE[qb,E] ∼ e− E*

T −SE[qb,E*
]

qb(τ + 1/T ) = qb(τ)

bounce solution corresponding to tunnelling from the state with energy E
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Consider the scalar field theory with the Lagrangian  and the “tunnelling” potential.L = −
1
2

(∂μϕ)2 − V(ϕ)
in the configuration space

Γ ∼ e−B , B =
Eb

T

At sufficiently high T, the decay occurs classically, through the formation of special 
thermodynamic fluctuation: critical bubble.

The critical bubble is described by the static solution of the equations of motion.

the energy of the critical bubble — barrier energy

— Boltzmann suppression Decay in the classical 
regime

Static solution

Periodic bounce

Bounce solutions at 
finite temperature
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Periodic thermal bounces dominate at low T  quantum tunnelling 

Static critical bubble dominates at large T  classical thermal jumps

⇔
⇔

Exponential suppression of vacuum decay 
as a function of temperature

thermal bounce

critical bubble

The typical picture of false vacuum decay at finite temperature is as follows.

Γ = A(T )e−B(T )

prefactor — “NLO”
exp. suppression — “LO”

vacuum suppression →

Depending on the tunnelling potential, the 
transition point can be smooth or only continuous.

We don’t know how the prefactor behaves around 
this point: it may well be discontinuous.

Typically, Tc ∼ m ≡ ℏωm
Affleck 80

Chudnovsky 92
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Actually, vacuum decay is, by definition, an out-of-equilibrium process!

The Euclidean formalism is, in general, not applicable to the decay of non-equilibrium initial states.

Anisotropic flux of radiation

Multicomponent radiation

The Euclidean formalism does not capture real-time dynamics of vacuum decay.

In particular, it does not determine vacuum boundary conditions for the semiclassical solution.

These can be found in a more general “in-in” formalism. 2105.09331

In many physical systems the initial state is not in thermal equilibrium.

 

 

 

The validity of the Euclidean formalism should not be taken as granted.
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critical bubble

Figure 1: Observables in vacuum decay. The basic observables in vacuum decay are the decay rate
� and the critical bubble profile '(r), which can both be predicted from the instanton techniques
and measured from bubbles formed in real-time simulations. Observables beyond the decay rate
include the bubble-bubble correlation function ⇠bb(t, r) that was explored in [36], as well as the
center-of-mass velocity ~vCOM of nucleated bubbles and oscillon precursors that we investigate in
this work.

such example is the clustering of bubble nucleation sites - the consequence of a non-trivial bubble-
bubble correlation function [36, 37]. This is a quantity that cannot be easily predicted using the
Euclidean instanton formalism. Here, we explore additional observable phenomena by developing a
set of algorithms to analyze in detail the properties of bubbles, before, during, and after nucleation.
Our qualitative results are summarized in Fig. 1. Defining an empirical temperature for infrared
modes on the lattice, the observed decay rate is consistent with the instanton prediction at this
e↵ective temperature. This is somewhat surprising as the input Bose-Einstein distribution is not
the true thermal equilibrium state of the field, and thermalization is an extremely slow process
in 1+1 dimensions. Nevertheless, we find throughout that the predictions of a thermal ensemble
describe our empirical measurements well.

Studying individual nucleation events, we find that bubbles never form at rest. We measure the
distribution of the bubble center-of-mass velocity, which has a variance determined by the e↵ective
temperature for infrared modes and the energy of the critical bubble. An accurate measurement
of the center-of-mass velocity allows us to stack nucleation events in their rest frame to determine
the critical bubble and its time evolution. The measured critical bubble is consistent with the
thermal Euclidean instanton prediction. Focusing on the field configuration prior to nucleation, we
confirm the prediction of Ref. [38] that the most likely formation channel for bubbles includes an
oscillon precursor. Oscillons are long-lived time-dependent field configurations [39] arising in scalar
field theories with anharmonic potentials (see e.g. [40, 41]), whose role in vacuum decay has been
discussed previously in Refs. [38, 42–45]. The existence of bubble precursors and a center-of-mass
velocity distribution could only have been confirmed with real-time description of vacuum decay,
and open the door to further investigations using similar techniques. Further, we speculate that
these features of vacuum decay can have observable implications for early-Universe phenomenology.

There have been a variety of recent e↵orts to perform experimental simulations of false vacuum
decay at low temperature using cold atom systems [46–58], quantum annealers [59], spin chains [60,
61], and (for the related Schwinger process) quantum computers [62, 63]. The detailed properties of
vacuum decay described above will be important observables for these experiments. In particular,
cold atom simulations of vacuum decay have recently been performed [58], with further results

– 2 –

from 2312.13364

This dynamics contains many interesting features that may be relevant for observations.

Pirvu, Johnson, Sibiryakov 23

This may be important for cosmological first order phase transitions or in table-top experiments.

2407.06263, 2408.06411

A black hole in the Unruh vacuum
2105.09331, 2111.08017

Particle collisions

Kuznetsov, Tinyakov 97
Levkov, Sibiryakov 05
Demidov, Levkov 15

Gleiser, Kolb et al, hep-ph/0409179, 0708.3844



Real-time, classical, lattice simulations
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Grigoriev, Rubakov, Shaposhnikov    — Sphaleron transitions, kink-antikink pair production, Hamiltonian dynamics

Alford, Feldman, Gleiser                    — Vacuum decay, Langevin dynamics

Gould, Moore, Rummukainen            — Vacuum decay, “multi-canonical sampling’’ + real-time evolution

Consider vacuum decay at finite temperature via classical thermal jumps of the field over the barrier.
i.e. at temperatures high (classical regime) but not too high (exponential — Boltzmann — suppression)

The decay happens through the formation of special thermodynamic fluctuation: critical bubble.

 

First, we focus on the Hamiltonian evolution of a single field; later, on the Langevin dynamics as well.

They are applicable if occupation numbers of all relevant for the decay modes are big.

Milestones:

Pîrvu, AS, Sibiryakov 2407.06263, 2408.06411

The goal is to test the predictions of the Euclidean theory and to see if anything 
interesting happens before and during the critical bubble nucleation.

i.e. with external heat bathi.e. no external heat bath
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Scalar field theory in 1+1 dimensions:

Simplest Setup

Thermal False Vacuum Decay Is Not What It Seems

Dalila P̂ırvu,1, 2, ⇤ Andrey Shkerin,1, † and Sergey Sibiryakov1, 3, ‡

1Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
2Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada

3Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada

We study the decay of a thermally excited metastable vacuum in classical field theory using real-
time numerical simulations. We find a lower decay rate than predicted by standard thermal theory.
The discrepancy is due to the violation of thermal equilibrium during the critical bubble nucleation.
It is reduced by introducing dissipation and noise. We propose a criterion for the system to remain in
equilibrium during the nucleation process and show that it is violated in the Hamiltonian evolution
of a single field. In the case of many fields, the fulfillment of the criterion is model-dependent.

Introduction — The decay of a metastable state
(false vacuum) plays an important role in many branches
of physics. It corresponds to first-order phase transitions
in condensed matter systems and relativistic field theo-
ries [1, 2]. In cosmology, such phase transitions have been
extensively studied in the context of baryon asymmetry
generation [3] and as possible sources of gravity waves
[4–6]. The current electroweak vacuum of the Standard
Model may be metastable [7, 8], implying its decay in
the future. There are several proposals to realize false
vacuum decay using cold atom systems [9–16], and the
first successful experiment was reported in [17].

In many physical situations, the initial state of the
system is an equilibrium thermal state around the false
vacuum with some temperature T . The traditional ap-
proach to this case is based on the Euclidean path inte-
gral method [18–22], which relates the decay rate to the
imaginary part of the metastable vacuum free energy. At
high enough temperatures, the transition proceeds via
formation of a critical bubble – an unstable solution of
the classical field equations that can decay both to the
false and the true vacuum. It corresponds to the saddle
point of the potential barrier separating the two vacua.
The Euclidean approach then yields the decay rate in the
form [23],1

� =
!�
⇡T

· ImF

V , (1)

where !� is the growth rate of the critical bubble’s un-
stable mode and V is the volume of the system. The
imaginary part of the free energy in the false vacuum
contains the Boltzmann suppression by the critical bub-
ble energy, ImF / e�Eb/T , as well as the determinant of
the operator describing small fluctuations around it [24].

At !� ⌧ T ⌧ Eb, the result (1) can also be obtained
by purely classical methods. Langer [25] considered a
classical multi-dimensional statistical system with dissi-
pation and noise provided by an external heat bath and

⇤ dpirvu@perimeterinstitute.ca
† ashkerin@perimeterinstitute.ca
‡ ssibiryakov@perimeterinstitute.ca
1 We use the system of units c = ~ = kB = 1 and define the rate
as the probability of decay per unit time and volume.

controlled by the friction parameter ⌘. False vacuum de-
cay then occurs as a result of di↵usion in phase space, and
the solution of the corresponding Fokker-Planck equation
yields the rate [26],

� =
1

⇡T

 r
!2
� +

⌘2

4
� ⌘

2

!
· ImF

V , (2)

which reduces to (1) in the limit ⌘ ! 0.
The Euclidean approach can tell us little about the

dynamics of bubble nucleation. Instead, this can be cap-
tured by real-time numerical simulations [27–37]. These
have revealed rich phenomena, including oscillon precur-
sors and non-zero bubble velocities [38–42]. In this work,
we continue the real-time study of thermal false vacuum
decay, focusing on the precise determination of its rate.
Surprisingly, we find deviations from Eqs. (1), (2), which
signal a breakdown of thermal equilibrium during bubble
nucleation. We formulate the necessary condition for the
validity of the standard rate calculation and show that it
is generally violated in commonly studied field theories.
Setup — We consider a real scalar field in (1 + 1)

dimensions with the action

S =

Z
dt dx

✓
� (@µ�)2

2
� m2�2

2
+

��4

4

◆
, (3)

where � > 0. The false vacuum is located at � = 0, and
the true vacuum corresponds to the run-away � ! ±1.
The choice of the quartic potential is convenient since
it allows us to determine all quantities entering the Eu-
clidean prediction for the rate analytically. However, we
have verified that none of our conclusions rely on this
choice.
In the theory (3), the critical bubble profile, its energy

and the growth rate of its unstable mode are:

�b(x) =

r
2

�
· m

chmx
, Eb =

4m3

3�
, !� =

p
3m. (4)

Evaluating the critical bubble contribution to the free
energy (see Supplemental Material) and substituting it
into the Euclidean formula (1), one obtains the nucle-
ation rate:

�E =
6m2

⇡

r
Eb

2⇡T
e�Eb/T . (5)

Euclidean theory predicts: 

We want to measure the decay rate (among other things) in “first-principle’’ classical lattice simulations 
We prepare a suite of simulations with the initial thermal Rayleigh-Jeans spectrum:
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We study the decay of a thermally excited metastable vacuum in classical field theory using real-
time numerical simulations. We find a lower decay rate than predicted by standard thermal theory.
The discrepancy is due to the violation of thermal equilibrium during the critical bubble nucleation.
It is reduced by introducing dissipation and noise. We propose a criterion for the system to remain in
equilibrium during the nucleation process and show that it is violated in the Hamiltonian evolution
of a single field. In the case of many fields, the fulfillment of the criterion is model-dependent.

Introduction — The decay of a metastable state
(false vacuum) plays an important role in many branches
of physics. It corresponds to first-order phase transitions
in condensed matter systems and relativistic field theo-
ries [1, 2]. In cosmology, such phase transitions have been
extensively studied in the context of baryon asymmetry
generation [3] and as possible sources of gravity waves
[4–6]. The current electroweak vacuum of the Standard
Model may be metastable [7, 8], implying its decay in
the future. There are several proposals to realize false
vacuum decay using cold atom systems [9–16], and the
first successful experiment was reported in [17].

In many physical situations, the initial state of the
system is an equilibrium thermal state around the false
vacuum with some temperature T . The traditional ap-
proach to this case is based on the Euclidean path inte-
gral method [18–22], which relates the decay rate to the
imaginary part of the metastable vacuum free energy. At
high enough temperatures, the transition proceeds via
formation of a critical bubble – an unstable solution of
the classical field equations that can decay both to the
false and the true vacuum. It corresponds to the saddle
point of the potential barrier separating the two vacua.
The Euclidean approach then yields the decay rate in the
form [23],1

� =
!�
⇡T

· ImF

V , (1)

where !� is the growth rate of the critical bubble’s un-
stable mode and V is the volume of the system. The
imaginary part of the free energy in the false vacuum
contains the Boltzmann suppression by the critical bub-
ble energy, ImF / e�Eb/T , as well as the determinant of
the operator describing small fluctuations around it [24].

At !� ⌧ T ⌧ Eb, the result (1) can also be obtained
by purely classical methods. Langer [25] considered a
classical multi-dimensional statistical system with dissi-
pation and noise provided by an external heat bath and
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1 We use the system of units c = ~ = kB = 1 and define the rate
as the probability of decay per unit time and volume.

controlled by the friction parameter ⌘. False vacuum de-
cay then occurs as a result of di↵usion in phase space, and
the solution of the corresponding Fokker-Planck equation
yields the rate [26],

� =
1

⇡T

 r
!2
� +

⌘2

4
� ⌘

2

!
· ImF

V , (2)

which reduces to (1) in the limit ⌘ ! 0.
The Euclidean approach can tell us little about the

dynamics of bubble nucleation. Instead, this can be cap-
tured by real-time numerical simulations [27–37]. These
have revealed rich phenomena, including oscillon precur-
sors and non-zero bubble velocities [38–42]. In this work,
we continue the real-time study of thermal false vacuum
decay, focusing on the precise determination of its rate.
Surprisingly, we find deviations from Eqs. (1), (2), which
signal a breakdown of thermal equilibrium during bubble
nucleation. We formulate the necessary condition for the
validity of the standard rate calculation and show that it
is generally violated in commonly studied field theories.
Setup — We consider a real scalar field in (1 + 1)

dimensions with the action

S =

Z
dt dx
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� (@µ�)2
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� m2�2

2
+

��4
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◆
, (3)

where � > 0. The false vacuum is located at � = 0, and
the true vacuum corresponds to the run-away � ! ±1.
The choice of the quartic potential is convenient since
it allows us to determine all quantities entering the Eu-
clidean prediction for the rate analytically. However, we
have verified that none of our conclusions rely on this
choice.
In the theory (3), the critical bubble profile, its energy

and the growth rate of its unstable mode are:

�b(x) =

r
2

�
· m

chmx
, Eb =

4m3

3�
, !� =

p
3m. (4)

Evaluating the critical bubble contribution to the free
energy (see Supplemental Material) and substituting it
into the Euclidean formula (1), one obtains the nucle-
ation rate:

�E =
6m2

⇡

r
Eb

2⇡T
e�Eb/T . (5)

…and evolve them until they decay (or simulation times out).

Eb =
4m3

3λ
,

We checked that this is an equilibrium state by evolving the 
theory with the stable potential using the Langevin equation.

barrier (critical bubble) energy

⟨ | ϕ̃j |
2 ⟩ = T/Ω2

j , ⟨ | π̃j |
2 ⟩ = T

Ω2
j = 2(1 − cos kja)/a2 + m2

th , kj = 2πj/L

m2
th = m2 −

3λT
2m

Fourier modes of the field and momentum

thermal correction to the mass, ≪ m2

Figure 3: Measurement of the thermal mass using 100 realizations of the Langevin dynamics with
⌘̂ = 1 and T̂ = 0.1. Mode frequencies are estimated using eq. (3.8). For each realization, the spectra
are sampled at 100 time moments evenly distributed in the interval 0 < t < 100. The simulation
data are shown by the solid black curve. The black dashed line shows their best fit using eq. (3.9).
It is in excellent agreement with the one-loop prediction (red dot-dashed curve). The tree-level
dispersion relation (blue dot-dashed curve) does not describe the data.

Second, we model the coupling of the system to an external heat bath by replacing the
Hamiltonian equation with the Langevin dynamics (to be discussed in detail in Sec. 5). We
choose a strong dissipation ⌘̂ = 1 which quickly brings the system to thermal equilibrium,
irrespective of the initial conditions, and measure the resulting thermal mass of the long
modes. To this end, we evaluate the ratio of the ⇡ and � power spectra averaged over an
ensemble of 100 realizations with T̂ = 0.1,

⌦2
j =

D
|⇡̃j |

2
E

⌧����̃j

���
2
� , kj ⌧

1

a
. (3.8)

This ratio provides an estimator of the mode frequencies. Plotting it against kj we obtain
the effective dispersion relation of long modes in the thermal environment. The result is
shown in Fig. 3 by the black solid curve. Clearly, it significantly deviates from the tree-level
dispersion relation ⌦2

j
= k2

j
+1 (blue dot-dashed curve). On the other hand, it is well fitted

by the Ansatz
⌦2
j = k2 + m̂2

th , (3.9)

with m̂2
th = 1.148. The latter value is less than 1% off the 1-loop thermal mass m̂2

th = 1.150

for the temperature T̂ = 0.1.
Additional corrections to the thermal spectrum arise due the finite box size and lattice

spacing. However, as discussed in Appendix C, these are completely negligible.
Before closing this subsection, let us introduce the notion of an ‘effective temperature’

of Fourier modes within a certain range of wavenumbers kmin < kj < kmax. We define it
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2

Below, we compare this expression with the results of
real-time numerical simulations.

Survival probability under Hamiltonian evolu-

tion — We discretize the action (3) on a periodic spa-
tial lattice with step a and length L using the second-
order finite-di↵erence approximation for spatial deriva-
tives. This leads to multi-dimensional Hamiltonian dy-
namics, whose classical equations are evolved using the
4th-order operator-splitting pseudo-spectral method [43].
Most runs are performed with a ' 0.012/m, L = 100/m,
and time step �t ' 0.8a. We have verified the con-
vergence of our results by varying the lattice param-
eters in the ranges ma 2 [5 · 10�3, 4 · 10�2], mL 2
[50, 400], �t/a 2 [0.4, 0.8]. The simulations were also
cross-checked with an independent code [42] based on a
10th-order Gauss-Legendre pseudo-spectral scheme, and
choosing ma = 0.04, mL 2 [80, 100] and �t ' 0.17a.

The initial conditions are picked up from an ensemble
of Gaussian perturbations around the false vacuum with
the thermal Rayleigh-Jeans spectrum. Namely, we de-
compose the field and its canonical momentum ⇡ ⌘ �̇ at
t = 0 in Fourier modes,

�i =
1p
L

N�1X

j=0

eikjxi �̃j , N ⌘ L

a
, kj ⌘

2⇡j

L
, (6)

with �̃⇤
j = �̃N�j , and similarly for ⇡i. The complex am-

plitudes �̃j , ⇡̃j are then drawn from independent Gaus-
sian distributions with the variances

h|�̃j |2i = T/⌦2
j , h|⇡̃j |2i = T . (7)

We include the thermal correction to the mass [44] in the
lattice mode frequencies,

⌦2
j =

2

a2
(1� cos akj) +m2

th , m2
th = m2 � 3�T

2m
. (8)

For the temperatures considered in our work this correc-
tion is ⇠ 15% and cannot be neglected.

We generate an ensemble of simulations with temper-
ature T and monitor them until they decay into the true
vacuum. At each moment of simulation time t, we count
the number of configurations that have not yet decayed.
The survival probability Psurv(t) is then defined as the
ratio of this number to the total initial number of con-
figurations in the ensemble. This measurement is re-
peated for several choices of temperature in the range
0.09 6 �T/m3 6 0.13. A typical result is shown by the
upper curve in Fig. 1.

For decays obeying the exponential distribution, the
survival probability follows the law

lnPsurv(t) = const� �L · t . (9)

The dotted line in Fig. 1 shows such a curve, using the
Euclidean prediction (5) for the rate. We see a clear dis-
crepancy between the prediction and the real-time data,
which calls for an explanation.

FIG. 1. Blue thick: Survival probability in real-time simula-
tions of Hamiltonian dynamics for �T/m3 = 0.1. Blue dashed:
Straight line tangent to the previous curve at t = 0. Red thin:
Survival probability from Langevin dynamics (Eq. (13)), at
the same temperature and with ⌘ = 0.01m. Wiggles in the
curve correspond to Poisson fluctuations. Black dotted: Pre-
diction of the Euclidean theory.

Flattening of lnPsurv:‘Classical Zeno e↵ect’ —
The measured survival curve in Fig. 1 is not straight:
it flattens out as time increases, implying a decrease of
the decay rate. The reason for this behavior lies in the
dynamics of bubble nucleation. The critical bubble is
composed of long modes with wavenumbers k . m, while
most of the field energy is stored in shorter modes. The
latter provide a thermal bath for the former. However,
the energy exchange between di↵erent modes is ine�cient
[44]. In the model at hand, it is dominated by 2 $ 4 and
3 $ 3 scattering2. The corresponding thermalization
time is estimated as (see Supplemental Material),3

tth ⇠ (2⇡)3

m

✓
m3

�T

◆4

. (10)

For the temperatures in our simulations tth & 106/m
which is longer than the typical decay time tdec ⇠
(�L)�1 ⇠ 104/m. The initial power contained in the
long modes is then essentially preserved for each indi-
vidual simulation and controls its lifetime. A simulation
which, due to a statistical fluctuation, has a higher long-
mode power decays faster, while the one with lower power
lives longer.
This, in turn, biases the statistical properties of the

surviving ensemble. As the time goes on, the average
long-mode power decreases. The e↵ect is apparent in
Fig. 2, where we plot the e↵ective temperature of long
modes (defined as the variance of their canonical mo-
menta), averaged over the surviving configurations at

2 2 $ 2 scattering preserves the energy distribution due to (1+1)-
dimensional kinematics.

3 Its parametric form can be found on dimensional grounds by first
restoring ~ and then requiring that it drops o↵ tth in the classical
limit.
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Below, we compare this expression with the results of
real-time numerical simulations.

Survival probability under Hamiltonian evolu-

tion — We discretize the action (3) on a periodic spa-
tial lattice with step a and length L using the second-
order finite-di↵erence approximation for spatial deriva-
tives. This leads to multi-dimensional Hamiltonian dy-
namics, whose classical equations are evolved using the
4th-order operator-splitting pseudo-spectral method [43].
Most runs are performed with a ' 0.012/m, L = 100/m,
and time step �t ' 0.8a. We have verified the con-
vergence of our results by varying the lattice param-
eters in the ranges ma 2 [5 · 10�3, 4 · 10�2], mL 2
[50, 400], �t/a 2 [0.4, 0.8]. The simulations were also
cross-checked with an independent code [42] based on a
10th-order Gauss-Legendre pseudo-spectral scheme, and
choosing ma = 0.04, mL 2 [80, 100] and �t ' 0.17a.

The initial conditions are picked up from an ensemble
of Gaussian perturbations around the false vacuum with
the thermal Rayleigh-Jeans spectrum. Namely, we de-
compose the field and its canonical momentum ⇡ ⌘ �̇ at
t = 0 in Fourier modes,
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with �̃⇤
j = �̃N�j , and similarly for ⇡i. The complex am-

plitudes �̃j , ⇡̃j are then drawn from independent Gaus-
sian distributions with the variances

h|�̃j |2i = T/⌦2
j , h|⇡̃j |2i = T . (7)

We include the thermal correction to the mass [44] in the
lattice mode frequencies,

⌦2
j =
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For the temperatures considered in our work this correc-
tion is ⇠ 15% and cannot be neglected.

We generate an ensemble of simulations with temper-
ature T and monitor them until they decay into the true
vacuum. At each moment of simulation time t, we count
the number of configurations that have not yet decayed.
The survival probability Psurv(t) is then defined as the
ratio of this number to the total initial number of con-
figurations in the ensemble. This measurement is re-
peated for several choices of temperature in the range
0.09 6 �T/m3 6 0.13. A typical result is shown by the
upper curve in Fig. 1.

For decays obeying the exponential distribution, the
survival probability follows the law

lnPsurv(t) = const� �L · t . (9)

The dotted line in Fig. 1 shows such a curve, using the
Euclidean prediction (5) for the rate. We see a clear dis-
crepancy between the prediction and the real-time data,
which calls for an explanation.

FIG. 1. Blue thick: Survival probability in real-time simula-
tions of Hamiltonian dynamics for �T/m3 = 0.1. Blue dashed:
Straight line tangent to the previous curve at t = 0. Red thin:
Survival probability from Langevin dynamics (Eq. (13)), at
the same temperature and with ⌘ = 0.01m. Wiggles in the
curve correspond to Poisson fluctuations. Black dotted: Pre-
diction of the Euclidean theory.

Flattening of lnPsurv:‘Classical Zeno e↵ect’ —
The measured survival curve in Fig. 1 is not straight:
it flattens out as time increases, implying a decrease of
the decay rate. The reason for this behavior lies in the
dynamics of bubble nucleation. The critical bubble is
composed of long modes with wavenumbers k . m, while
most of the field energy is stored in shorter modes. The
latter provide a thermal bath for the former. However,
the energy exchange between di↵erent modes is ine�cient
[44]. In the model at hand, it is dominated by 2 $ 4 and
3 $ 3 scattering2. The corresponding thermalization
time is estimated as (see Supplemental Material),3

tth ⇠ (2⇡)3
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For the temperatures in our simulations tth & 106/m
which is longer than the typical decay time tdec ⇠
(�L)�1 ⇠ 104/m. The initial power contained in the
long modes is then essentially preserved for each indi-
vidual simulation and controls its lifetime. A simulation
which, due to a statistical fluctuation, has a higher long-
mode power decays faster, while the one with lower power
lives longer.
This, in turn, biases the statistical properties of the

surviving ensemble. As the time goes on, the average
long-mode power decreases. The e↵ect is apparent in
Fig. 2, where we plot the e↵ective temperature of long
modes (defined as the variance of their canonical mo-
menta), averaged over the surviving configurations at

2 2 $ 2 scattering preserves the energy distribution due to (1+1)-
dimensional kinematics.

3 Its parametric form can be found on dimensional grounds by first
restoring ~ and then requiring that it drops o↵ tth in the classical
limit.

Introduce survival probability

For decays obeying the exponential distribution, it follows the law:

This is decay rate

Euclidean Theory

 

(we exclude early-time transients)
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Below, we compare this expression with the results of
real-time numerical simulations.

Survival probability under Hamiltonian evolu-

tion — We discretize the action (3) on a periodic spa-
tial lattice with step a and length L using the second-
order finite-di↵erence approximation for spatial deriva-
tives. This leads to multi-dimensional Hamiltonian dy-
namics, whose classical equations are evolved using the
4th-order operator-splitting pseudo-spectral method [43].
Most runs are performed with a ' 0.012/m, L = 100/m,
and time step �t ' 0.8a. We have verified the con-
vergence of our results by varying the lattice param-
eters in the ranges ma 2 [5 · 10�3, 4 · 10�2], mL 2
[50, 400], �t/a 2 [0.4, 0.8]. The simulations were also
cross-checked with an independent code [42] based on a
10th-order Gauss-Legendre pseudo-spectral scheme, and
choosing ma = 0.04, mL 2 [80, 100] and �t ' 0.17a.

The initial conditions are picked up from an ensemble
of Gaussian perturbations around the false vacuum with
the thermal Rayleigh-Jeans spectrum. Namely, we de-
compose the field and its canonical momentum ⇡ ⌘ �̇ at
t = 0 in Fourier modes,
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with �̃⇤
j = �̃N�j , and similarly for ⇡i. The complex am-

plitudes �̃j , ⇡̃j are then drawn from independent Gaus-
sian distributions with the variances

h|�̃j |2i = T/⌦2
j , h|⇡̃j |2i = T . (7)

We include the thermal correction to the mass [44] in the
lattice mode frequencies,

⌦2
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For the temperatures considered in our work this correc-
tion is ⇠ 15% and cannot be neglected.

We generate an ensemble of simulations with temper-
ature T and monitor them until they decay into the true
vacuum. At each moment of simulation time t, we count
the number of configurations that have not yet decayed.
The survival probability Psurv(t) is then defined as the
ratio of this number to the total initial number of con-
figurations in the ensemble. This measurement is re-
peated for several choices of temperature in the range
0.09 6 �T/m3 6 0.13. A typical result is shown by the
upper curve in Fig. 1.

For decays obeying the exponential distribution, the
survival probability follows the law

lnPsurv(t) = const� �L · t . (9)

The dotted line in Fig. 1 shows such a curve, using the
Euclidean prediction (5) for the rate. We see a clear dis-
crepancy between the prediction and the real-time data,
which calls for an explanation.

FIG. 1. Blue thick: Survival probability in real-time simula-
tions of Hamiltonian dynamics for �T/m3 = 0.1. Blue dashed:
Straight line tangent to the previous curve at t = 0. Red thin:
Survival probability from Langevin dynamics (Eq. (13)), at
the same temperature and with ⌘ = 0.01m. Wiggles in the
curve correspond to Poisson fluctuations. Black dotted: Pre-
diction of the Euclidean theory.

Flattening of lnPsurv:‘Classical Zeno e↵ect’ —
The measured survival curve in Fig. 1 is not straight:
it flattens out as time increases, implying a decrease of
the decay rate. The reason for this behavior lies in the
dynamics of bubble nucleation. The critical bubble is
composed of long modes with wavenumbers k . m, while
most of the field energy is stored in shorter modes. The
latter provide a thermal bath for the former. However,
the energy exchange between di↵erent modes is ine�cient
[44]. In the model at hand, it is dominated by 2 $ 4 and
3 $ 3 scattering2. The corresponding thermalization
time is estimated as (see Supplemental Material),3
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For the temperatures in our simulations tth & 106/m
which is longer than the typical decay time tdec ⇠
(�L)�1 ⇠ 104/m. The initial power contained in the
long modes is then essentially preserved for each indi-
vidual simulation and controls its lifetime. A simulation
which, due to a statistical fluctuation, has a higher long-
mode power decays faster, while the one with lower power
lives longer.
This, in turn, biases the statistical properties of the

surviving ensemble. As the time goes on, the average
long-mode power decreases. The e↵ect is apparent in
Fig. 2, where we plot the e↵ective temperature of long
modes (defined as the variance of their canonical mo-
menta), averaged over the surviving configurations at

2 2 $ 2 scattering preserves the energy distribution due to (1+1)-
dimensional kinematics.

3 Its parametric form can be found on dimensional grounds by first
restoring ~ and then requiring that it drops o↵ tth in the classical
limit.
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Below, we compare this expression with the results of
real-time numerical simulations.

Survival probability under Hamiltonian evolu-

tion — We discretize the action (3) on a periodic spa-
tial lattice with step a and length L using the second-
order finite-di↵erence approximation for spatial deriva-
tives. This leads to multi-dimensional Hamiltonian dy-
namics, whose classical equations are evolved using the
4th-order operator-splitting pseudo-spectral method [43].
Most runs are performed with a ' 0.012/m, L = 100/m,
and time step �t ' 0.8a. We have verified the con-
vergence of our results by varying the lattice param-
eters in the ranges ma 2 [5 · 10�3, 4 · 10�2], mL 2
[50, 400], �t/a 2 [0.4, 0.8]. The simulations were also
cross-checked with an independent code [42] based on a
10th-order Gauss-Legendre pseudo-spectral scheme, and
choosing ma = 0.04, mL 2 [80, 100] and �t ' 0.17a.

The initial conditions are picked up from an ensemble
of Gaussian perturbations around the false vacuum with
the thermal Rayleigh-Jeans spectrum. Namely, we de-
compose the field and its canonical momentum ⇡ ⌘ �̇ at
t = 0 in Fourier modes,

�i =
1p
L

N�1X

j=0

eikjxi �̃j , N ⌘ L

a
, kj ⌘

2⇡j

L
, (6)
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j = �̃N�j , and similarly for ⇡i. The complex am-

plitudes �̃j , ⇡̃j are then drawn from independent Gaus-
sian distributions with the variances
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lattice mode frequencies,
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For the temperatures considered in our work this correc-
tion is ⇠ 15% and cannot be neglected.

We generate an ensemble of simulations with temper-
ature T and monitor them until they decay into the true
vacuum. At each moment of simulation time t, we count
the number of configurations that have not yet decayed.
The survival probability Psurv(t) is then defined as the
ratio of this number to the total initial number of con-
figurations in the ensemble. This measurement is re-
peated for several choices of temperature in the range
0.09 6 �T/m3 6 0.13. A typical result is shown by the
upper curve in Fig. 1.

For decays obeying the exponential distribution, the
survival probability follows the law

lnPsurv(t) = const� �L · t . (9)

The dotted line in Fig. 1 shows such a curve, using the
Euclidean prediction (5) for the rate. We see a clear dis-
crepancy between the prediction and the real-time data,
which calls for an explanation.

FIG. 1. Blue thick: Survival probability in real-time simula-
tions of Hamiltonian dynamics for �T/m3 = 0.1. Blue dashed:
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Survival probability from Langevin dynamics (Eq. (13)), at
the same temperature and with ⌘ = 0.01m. Wiggles in the
curve correspond to Poisson fluctuations. Black dotted: Pre-
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Flattening of lnPsurv:‘Classical Zeno e↵ect’ —
The measured survival curve in Fig. 1 is not straight:
it flattens out as time increases, implying a decrease of
the decay rate. The reason for this behavior lies in the
dynamics of bubble nucleation. The critical bubble is
composed of long modes with wavenumbers k . m, while
most of the field energy is stored in shorter modes. The
latter provide a thermal bath for the former. However,
the energy exchange between di↵erent modes is ine�cient
[44]. In the model at hand, it is dominated by 2 $ 4 and
3 $ 3 scattering2. The corresponding thermalization
time is estimated as (see Supplemental Material),3
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For the temperatures in our simulations tth & 106/m
which is longer than the typical decay time tdec ⇠
(�L)�1 ⇠ 104/m. The initial power contained in the
long modes is then essentially preserved for each indi-
vidual simulation and controls its lifetime. A simulation
which, due to a statistical fluctuation, has a higher long-
mode power decays faster, while the one with lower power
lives longer.
This, in turn, biases the statistical properties of the

surviving ensemble. As the time goes on, the average
long-mode power decreases. The e↵ect is apparent in
Fig. 2, where we plot the e↵ective temperature of long
modes (defined as the variance of their canonical mo-
menta), averaged over the surviving configurations at

2 2 $ 2 scattering preserves the energy distribution due to (1+1)-
dimensional kinematics.

3 Its parametric form can be found on dimensional grounds by first
restoring ~ and then requiring that it drops o↵ tth in the classical
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Introduce survival probability

For decays obeying the exponential distribution, it follows the law:

This is decay rate

Simulation vs Euclidean Theory

 

Decay rate found in simulations is smaller than the Euclidean prediction 

It is, moreover, time-dependent, getting even smaller with time 

(we exclude early-time transients)
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Long modes Short modes

Relevant for the decay Background for the long modes

For the Hamiltonian evolution, it means the following: 

k

Relevant  
sub-system Thermostat

But thermalisation in the theory is very inefficient: for modes with (bubble size) ,

the thermalisation time is

ω ∼ m ∼ −1

This observable is useful when the system deviates from equilibrium, and the difference
between Te↵ and T̃ is a measure of such a deviation.

3.3 Thermalisation of long modes
ssec:therm

We mentioned in Sec. 1 that the dynamics of thermal false vacuum decay crucially depends
on the rate of thermalisation between the thermostat and the relevant degrees of freedom
near the barrier. Hence, it is important to estimate the thermalisation time tth in the model
(3.2), which we do below, both analytically and numerically.

One can find tth by considering the Boltzmann equation for particle phase-space density
fp, see e.g. [36]. For clarity, let us restore the mass and coupling constant for the moment.
In (1 + 1) dimensions the leading processes resulting in the energy exchange between the
particles are the 2 $ 4 and 3 $ 3 scatterings which give comparable contributions into the
collision integral.3 For concreteness, let us focus on the former. Denoting the momenta of
incoming particles by p1, p2, we have
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Assume for simplicity that all particles have comparable momenta of order p. Then the
scattering amplitude is A2!4 ⇠ �2/!2

p, and the dominant contribution from the Bose-
enhancement factor is f5

p ⇠ (T/!p)5. This yields,
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whence we read off the thermalisation time
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m
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⌘11
. (3.9){t_therm2}{t_therm2}

Note the steep increase of tth with the particle’s energy. The modes relevant for the decay
have energies !p ⇠ `�1

⇠ m. Their thermalisation predominantly takes place through
the interaction with modes of comparable energy. Substituting !p ⇠ m to eq. (3.9) and
switching back to the dimensionless units (eqs. (2.9) and (3.1)), we obtain

tth ⇠
(2⇡)3

T̃ 4
. (3.10){t_therm3}{t_therm3}

To check this estimate, we make the following numerical experiment. First, we switch
the sign of self-interaction in (3.2) in order to avoid dealing with decays. We prepare an
ensemble of initial states according to the equilibrium distribution (3.4), (3.5) (in (3.5),
one should change the sign of the last term). Then, the power in the long modes with

32 $ 2 scattering preserves the energy distribution due to (1 + 1)-dimensional kinematics.

– 10 –

(due to           and            scattering processes)2 → 4 3 → 3, T̃ =
λT
m3

≪ 1
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Long modes Short modes

Relevant for the decay Background for the long modes

For the Hamiltonian evolution, it means the following: 

k

Relevant  
sub-system Thermostat

Compare this with the decay time: tdec ∼ (ΓL)−1

In our simulations it happens that tth > tdec

This leads to the interesting effect.

(hardly relevant for cosmology, but can be relevant for experiments)
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To check this estimate, we make the following numerical experiment. First, we switch
the sign of self-interaction in (3.2) in order to avoid dealing with decays. We prepare an
ensemble of initial states according to the equilibrium distribution (3.4), (3.5) (in (3.5),
one should change the sign of the last term). Then, the power in the long modes with
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(due to           and            scattering processes)2 → 4 3 → 3, T̃ =
λT
m3

≪ 1

But thermalisation in the theory is very inefficient: for modes with (bubble size) ,

the thermalisation time is

ω ∼ m ∼ −1

What does it mean “thermal’’?
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Because of inefficient thermalisation, the initial power contained in the long modes 
is preserved during the simulation.

 

The configuration which, due to a statistical fluctuation, has a higher initial long-
mode power decays faster. The one with lower power lives longer.

 

Statistical properties of the ensemble change with time: long modes cool down.

(a) (b)

Figure 7: (a) Effective temperature of long modes, averaged over the surviving configurations at
time t. The temperature computed using all modes is also shown and is time-independent. (b)
Extrapolation of the time-dependent decay rate �t to t = 0, at several values of temperature. Solid
lines correspond to eq. (4.2) with best=fit parameters. fig:Teff

with smaller Te↵ are more likely to remain. We illustrate this on Fig. 7(a) which shows the
evolution of Te↵ , averaged over surviving simulations, with time.

It follows that the lowering with time decay probability can be associated with the
lowering effective temperature of long modes. The latter can be expanded as Te↵ ⇡ T̃ (1�↵t)

where one expects ↵ / �. Replacing T by Te↵ in eq. (1.1), we obtain an estimate for the
time-dependent decay rate at small �t:

ln�t = ln� �
Ẽb

T̃
↵t . (4.2){G(t)}{G(t)}

Note that since Ẽb/T̃ � 1, the effect becomes already significant at �t ⌧ 1, in agreement
with the result presented in Fig. 6.

To conclude, in cases when tdec < tth, a system that is observed not to decay within
a given time has a lower chance of decaying in the future. This resembles the Zeno effect,
which allows one to freeze the evolution of a quantum system by measuring its state. We
stress, however, that in our case, the effect is purely classical.

4.3 Unbiased rate

To compare the decay rate with the theoretical prediction, we need to measure it in the
unbiased canonical ensemble. Hence, we need to extrapolate the measured values �t at
different t to t = 0. To this end, we use eq. (4.2) with ln�, ↵ being the fitting parameters.

We proceed as follows. On a curve y = lnPsurv(t) take the points (t0 = 0, y0 = 0),
(t1, y1), (t2, y2), . . . , such that y1 � y0 = y2 � y1 = . . . . The points split the curve into
segments. Remove the first segment from the analysis to avoid the transient effects. Fit the
remaining segments by straight lines; denote by �i the (negative) slope of the line fitting
the ith segment. By identifying ln�(ti+ti+1)/2 = ln�i, we obtain a series of points for the
2-parameter fit. The fit gives us the logarithm of the unbiased decay rate ln�.

– 15 –

Effective temp. of long modes
for simulations whose lifetime is longer than t

Effective temp. of long modes drops by a few per cent during the run: enough to visibly suppress the decays. 
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Because of inefficient thermalisation, the initial power contained in the long modes 
is preserved during the simulation.

 

The configuration which, due to a statistical fluctuation, has a higher initial long-
mode power decays faster. The one with lower power lives longer.

 

Statistical properties of the ensemble change with time: long modes cool down.

(a) (b)
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time t. The temperature computed using all modes is also shown and is time-independent. (b)
Extrapolation of the time-dependent decay rate �t to t = 0, at several values of temperature. Solid
lines correspond to eq. (4.2) with best=fit parameters. fig:Teff
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evolution of Te↵ , averaged over surviving simulations, with time.

It follows that the lowering with time decay probability can be associated with the
lowering effective temperature of long modes. The latter can be expanded as Te↵ ⇡ T̃ (1�↵t)

where one expects ↵ / �. Replacing T by Te↵ in eq. (1.1), we obtain an estimate for the
time-dependent decay rate at small �t:

ln�t = ln� �
Ẽb
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Note that since Ẽb/T̃ � 1, the effect becomes already significant at �t ⌧ 1, in agreement
with the result presented in Fig. 6.

To conclude, in cases when tdec < tth, a system that is observed not to decay within
a given time has a lower chance of decaying in the future. This resembles the Zeno effect,
which allows one to freeze the evolution of a quantum system by measuring its state. We
stress, however, that in our case, the effect is purely classical.

4.3 Unbiased rate

To compare the decay rate with the theoretical prediction, we need to measure it in the
unbiased canonical ensemble. Hence, we need to extrapolate the measured values �t at
different t to t = 0. To this end, we use eq. (4.2) with ln�, ↵ being the fitting parameters.

We proceed as follows. On a curve y = lnPsurv(t) take the points (t0 = 0, y0 = 0),
(t1, y1), (t2, y2), . . . , such that y1 � y0 = y2 � y1 = . . . . The points split the curve into
segments. Remove the first segment from the analysis to avoid the transient effects. Fit the
remaining segments by straight lines; denote by �i the (negative) slope of the line fitting
the ith segment. By identifying ln�(ti+ti+1)/2 = ln�i, we obtain a series of points for the
2-parameter fit. The fit gives us the logarithm of the unbiased decay rate ln�.

– 15 –

Effective temp. of long modes
for simulations whose lifetime is longer than t

Effective temp. of long modes drops by a few per cent during the run: enough to visibly suppress the decays. 

Decay is a non-Markovian process (in this regime).

The longer we observe the system, the less chance it has to decay in the future: classical Zeno effect.

To find the unbiased rate, we extrapolate the slope of the survival probability curve to zero.
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(a) (b)

Figure 8: (a) Decay rate data points ln�(T̃ ) and line (4.4) with the best-fit value of Ẽb (black
solid) against the prediction of the Euclidean theory (red dashed). (b) Decay rate data points and
the measured value of the prefactor A(exp) (black) with 1� deviation (blue). fig:E_sph

Let us estimate the error of the decay rate measurement. For each probability curve,
we have ⇠ 100 decay events per curve segment. The measurement uncertainty within each
segment is ⇠ 10% and dominated by statistics; it can be estimated as (see Appendix D for
details)

�ln�i =
1

p
Ni

, (4.3){sigma_lnG}{sigma_lnG}

where Ni is the number of decay events in the time range ti < t < ti+1. The error of the
extrapolated value �ln� is obtained from the errors �ln�i using the linear regression. The
extrapolating procedure is illustrated in Fig. 7(b).

4.4 Comparison with the Euclidean prediction

We do the above procedure for 9 values of temperature spanning the interval 0.09 6 T̃ 6
0.13 and obtain the function �(T̃ ), which we fit by the expression

ln�(T̃ ) = �
1

2
ln T̃ + lnA �

B

T̃
(4.4){log_G(T)}{log_G(T)}

with free parameters A and B. The first term on the right accounts for the temperature
dependence of the prefactor predicted by eq. (2.6).

First, we measure the value B associated with the barrier height. To this end, we
take the ratio ln

⇣
�(T̃ )/�(T̃⇤)

⌘
with T̃⇤ = 0.11. The fit is shown in Fig. 8(a). It gives

B/Ẽb = 0.98 ± 0.02, thus confirming the prediction of the Euclidean theory with accuracy
⇡ 2%. Note that the bubble energy receives no thermal loop corrections, cf. [24, 25, 33].

Next, we measure the parameter A associated with the prefactor. We equate B to its
theory value Ẽb in eq. (4.4) and extract A at different values of temperature. The ratio
of the result to the Euclidean prediction of eq. (2.6) is shown in Fig. 8(b). The ratio is

– 16 –

3

FIG. 2. E↵ective temperature Te↵ = h|⇡̃j |2ikj<k⇤ of long
modes for k⇤ = m and k⇤ = 2m, averaged over the surviving
configurations at time t. The temperature computed using all
modes is also shown and is time-independent.

time t. The e↵ective temperature decreases by a few per
cent during the run, enough to considerably suppress the
bubble nucleation rate. Rather unexpectedly, the decay
happens to be non-Markovian: a system that is observed
not to decay within a given time has a lower chance of
decaying in the future. This is reminiscent of the Zeno
e↵ect, which allows one to freeze the evolution of a quan-
tum system by measurements. We stress, however, that
in our case, the e↵ect is purely classical.

The drift in the rate is expected to disappear when the
decay is slow enough so that the condition tdec � tth is
satisfied. This condition is likely fulfilled in most cosmo-
logical settings. On the other hand, whether it holds in
laboratory experiments, especially in those using (1+1)-
dimensional systems, is less evident. In this case, the
classical Zeno e↵ect should be taken into account.

Unbiased rate — For quantitative comparison with
the Euclidean prediction (5), we measure the slope
d lnPsurv/dt at t ! 0 corresponding to the rate in the
initial unbiased ensemble. We use an extrapolation pro-
cedure to increase the accuracy. The probability curve
is split into small, approximately linear segments, and
the slope of each segment is measured. The logarithms
of the slopes thus obtained are fitted with a linear func-
tion of time whose value at t = 0 yields the logarithm of
the unbiased rate �. Its error is dominated by statistical
uncertainty. Repeating the procedure at di↵erent tem-
peratures, we obtain the function �(T ), which we fit by
the expression,

ln�(T ) = �1

2
lnT + lnA� B

T
, (11)

with free parameters A and B. The first term on the right
accounts for the temperature dependence of the prefactor
predicted by Eq. (5).

First, we eliminate the unknown constant A by taking
the ratio �(T )/�(T⇤) with T⇤ from the middle of the in-
terval and determine the slope B. The fit is shown in the
top panel of Fig. 3. It gives B/Eb = 0.98± 0.02 with Eb

FIG. 3. Top: The ratio of unbiased decay rates fitted using
Eq. (11). The dashed line is the Euclidean theory predic-
tion. Bottom: Prefactor extracted from real-time simula-
tions A(sim) vs. Euclidean prediction AE . The horizontal
band shows the average and the corresponding 1� error bar.

from Eq. (5), consistent with the predicted Boltzmann
suppression. Note that the bubble energy receives no
thermal loop corrections, cf. [33, 34, 45].
Next, we measure the prefactor. We fix B = Eb in

Eq. (11) and extract A at di↵erent values of temperature.
The ratio of the result to the Euclidean prediction of
Eq. (5) is shown in the bottom panel of Fig. 3. The mea-
sured prefactor A(sim) is smaller than the prediction AE

by a factor ⇠ 8. The ratio is temperature-independent
within the error bars. Thus, we can combine the data at
di↵erent T to obtain

A(sim)/AE = 0.13± 0.01 . (12)

The discrepancy cannot be attributed to two-loop correc-
tions, which are expected to a↵ect the prefactor only at
the �T/m3 ⇠ 10% level. The independence of the ratio
A(sim)/AE of T further rules out this interpretation.
Decay with an external heat bath —To investigate

the system further, we artificially reduce its thermaliza-
tion time by coupling it to an external heat bath. This
is implemented by promoting the equation of motion to
the Langevin equation,

�̈+ ⌘�̇� �00 +m2�� ��3 = ⇠ , (13)

where ⌘ is the friction coe�cient and ⇠(t, x) is the
white noise, whose amplitude is fixed by the fluctuation-
dissipation theorem:

h⇠(t, x)⇠(t0, x0)i = 2⌘T �(t� t0)�(x� x0) . (14)

We solve this equation numerically using a 3rd-order
stochastic pseudo-spectral operator-splitting scheme [43,
46]. The initial conditions are still set by Eqs. (6) and

We measure the (unbiased) decay rate at different temps. and fit with the formula (recall that )ΓE = AE exp(−Eb /T ) 

prefactor (with the zero mode excluded)

from the zero mode in the prefactor

critical bubble energy

One can measure A and B separately, using the ratio                       to find B, with some reference temp. Γ(T )/Γ(T*) T*

Or one can make the 2-parameter fit, the result is the same (within the errorbars).

Critical bubble energy agrees with the Euclidean theory (<2% error bar) 

The measured prefactor is smaller by a factor ~8. 

Something wrong with thermalisation again? Violation of thermal equilibrium near the critical bubble?
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We can reduce artificially the thermalisation time by coupling the system to an external heat bath.

{

temperature-independent within error-bars. Thus, we can combine the data at different T̃

and obtain
A(sim)/AE = 0.13 ± 0.01 . (4.5){Aration}{Aration}

We see a factor ⇠ 8 discrepancy in the prefactor between the real-time simulations and
the Euclidean theory. To cross-check this result, we perform the two-parameter fit of the
function �(T̃ ) using eq. (4.4). It gives the same values for A and B within error bars.

The observed discrepancy cannot be attributed to two-loop corrections, since the latter
are expected to affect the prefactor only at the T̃ ⇠ 10% level. It cannot be due to the
classical Zeno effect either, since the change in the effective temperature of long modes
is too small to account for it. Finally, as we show in next Section, it cannot be due to
unknown systematics in the preparation of the initial state.

We have already identified the reason for the discrepancy. It lies in the fact that the
theory (2.1) does not have an efficient thermalisation mechanism between the relevant for
the decay degrees of freedom (long modes) and the rest of the system (short modes, or
thermostat). The system is prepared in equilibrium around the false vacuum, but it runs
out of equilibrium near the barrier. As a result, the Euclidean prefactor is not reproduced.

We conjecture that the necessary condition for equilibrium near the barrier is provided
by eq. (1.2). Comparing with eq. (3.10), we see that the condition is always violated if the
theory is at weak coupling, T̃ ⌧ 1. As discussed above, this appears to be a general feature
of a theory with just one coupling parameter. Nevertheless, we would like to verify that
decreasing tth leads to alleviation of the discrepancy between the true and Euclidean rates.
To this end, we presently couple the system to an external thermostat.

5 Thermal transitions with the Langevin evolution
sec:simL

5.1 Enhancing thermalisation rate

We would like to bring more evidence for the crucial role equilibration processes play in
vacuum decay. To this end, we couple the theory (2.1) to an external heat bath. By varying
the coupling strength, one can change tth in the vicinity of the barrier. We will see that
this has a profound effect on the dynamics and the rate of decay.

To model the effect of the external ideal thermostat, we introduce stochastic terms into
the field’s classical equation of motion. Namely, we promote it to the Langevin equation

'̈+ ⌘'̇ � '00 + ' � '3 = ⇠ , (5.1){LangEq}{LangEq}

where ⌘ is the dissipation coefficient, and ⇠ = ⇠(t, x) is a white noise satisfying

h⇠(t, x)i = 0 ,
⌦
⇠(t, x)⇠(t0, x0)

↵
= 2⌘T̃ �(t � t0)�(x � x0) , (5.2){Noise}{Noise}

in agreement with the fluctuation-dissipation theorem. Every Fourier mode of the field ' is
now coupled to the external heat bath, and their thermalisation rate is set by the dissipation
coefficient rather than self-interaction:

tth ⇠ ⌘�1 . (5.3){t_therm_eta}{t_therm_eta}

– 17 –

Noise and dissipation change the dynamics of vacuum decay.

2

Below, we compare this expression with the results of
real-time numerical simulations.

Survival probability under Hamiltonian evolu-

tion — We discretize the action (3) on a periodic spa-
tial lattice with step a and length L using the second-
order finite-di↵erence approximation for spatial deriva-
tives. This leads to multi-dimensional Hamiltonian dy-
namics, whose classical equations are evolved using the
4th-order operator-splitting pseudo-spectral method [43].
Most runs are performed with a ' 0.012/m, L = 100/m,
and time step �t ' 0.8a. We have verified the con-
vergence of our results by varying the lattice param-
eters in the ranges ma 2 [5 · 10�3, 4 · 10�2], mL 2
[50, 400], �t/a 2 [0.4, 0.8]. The simulations were also
cross-checked with an independent code [42] based on a
10th-order Gauss-Legendre pseudo-spectral scheme, and
choosing ma = 0.04, mL 2 [80, 100] and �t ' 0.17a.

The initial conditions are picked up from an ensemble
of Gaussian perturbations around the false vacuum with
the thermal Rayleigh-Jeans spectrum. Namely, we de-
compose the field and its canonical momentum ⇡ ⌘ �̇ at
t = 0 in Fourier modes,

�i =
1p
L

N�1X

j=0

eikjxi �̃j , N ⌘ L

a
, kj ⌘

2⇡j

L
, (6)

with �̃⇤
j = �̃N�j , and similarly for ⇡i. The complex am-

plitudes �̃j , ⇡̃j are then drawn from independent Gaus-
sian distributions with the variances

h|�̃j |2i = T/⌦2
j , h|⇡̃j |2i = T . (7)

We include the thermal correction to the mass [44] in the
lattice mode frequencies,

⌦2
j =

2

a2
(1� cos akj) +m2

th , m2
th = m2 � 3�T

2m
. (8)

For the temperatures considered in our work this correc-
tion is ⇠ 15% and cannot be neglected.

We generate an ensemble of simulations with temper-
ature T and monitor them until they decay into the true
vacuum. At each moment of simulation time t, we count
the number of configurations that have not yet decayed.
The survival probability Psurv(t) is then defined as the
ratio of this number to the total initial number of con-
figurations in the ensemble. This measurement is re-
peated for several choices of temperature in the range
0.09 6 �T/m3 6 0.13. A typical result is shown by the
upper curve in Fig. 1.

For decays obeying the exponential distribution, the
survival probability follows the law

lnPsurv(t) = const� �L · t . (9)

The dotted line in Fig. 1 shows such a curve, using the
Euclidean prediction (5) for the rate. We see a clear dis-
crepancy between the prediction and the real-time data,
which calls for an explanation.

FIG. 1. Blue thick: Survival probability in real-time simula-
tions of Hamiltonian dynamics for �T/m3 = 0.1. Blue dashed:
Straight line tangent to the previous curve at t = 0. Red thin:
Survival probability from Langevin dynamics (Eq. (13)), at
the same temperature and with ⌘ = 0.01m. Wiggles in the
curve correspond to Poisson fluctuations. Black dotted: Pre-
diction of the Euclidean theory.

Flattening of lnPsurv:‘Classical Zeno e↵ect’ —
The measured survival curve in Fig. 1 is not straight:
it flattens out as time increases, implying a decrease of
the decay rate. The reason for this behavior lies in the
dynamics of bubble nucleation. The critical bubble is
composed of long modes with wavenumbers k . m, while
most of the field energy is stored in shorter modes. The
latter provide a thermal bath for the former. However,
the energy exchange between di↵erent modes is ine�cient
[44]. In the model at hand, it is dominated by 2 $ 4 and
3 $ 3 scattering2. The corresponding thermalization
time is estimated as (see Supplemental Material),3

tth ⇠ (2⇡)3

m

✓
m3

�T

◆4

. (10)

For the temperatures in our simulations tth & 106/m
which is longer than the typical decay time tdec ⇠
(�L)�1 ⇠ 104/m. The initial power contained in the
long modes is then essentially preserved for each indi-
vidual simulation and controls its lifetime. A simulation
which, due to a statistical fluctuation, has a higher long-
mode power decays faster, while the one with lower power
lives longer.
This, in turn, biases the statistical properties of the

surviving ensemble. As the time goes on, the average
long-mode power decreases. The e↵ect is apparent in
Fig. 2, where we plot the e↵ective temperature of long
modes (defined as the variance of their canonical mo-
menta), averaged over the surviving configurations at

2 2 $ 2 scattering preserves the energy distribution due to (1+1)-
dimensional kinematics.

3 Its parametric form can be found on dimensional grounds by first
restoring ~ and then requiring that it drops o↵ tth in the classical
limit.

Simulation at zero vs non-zero noise ( )η = 10−2m

 No Zeno effect as long as η ≳ ΓL
Decay rate increases, but still below the Euclidean bound 

They don’t change the critical bubble.

··ϕ + η ·ϕ − ϕ′￼′￼+ m2ϕ − λϕ3 = ξ
⟨ξ(t, x)⟩ = 0 , ⟨ξ(t, x)ξ(t′￼, x′￼)⟩ = 2ηTδ(t − t′￼)δ(x − x′￼)
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As dissipation increases,  increases as well. It reaches maximum at , 
then starts decreasing due to over-damping.

Γ η ≃ 3 ⋅ 10−1m 

 tends to increase when  goes down.Γ T 

We observe the following behavior:

Langer’s classical-statistical theory

Decay rate at various dissipation and temperature
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In Physical Chemistry, the analog of Euclidean Theory is Transition State Theory (TST).

for review see Hanggi, Talkner, Borkovec, Rev.Mod.Phys. 62 (1990)

TST deals with particles (one or few d.o.f.) in the external heat bath, .η > 0

It is known that TST is violated if there is no equilibrium around the barrier. 
The following condition must be satisfied:

We can generalise this condition to Langevin dynamics of field theory.
This is done by careful examination of Langer’s work.

For the Hamiltonian dynamics of field theory, we suggest the following condition:
All our current and future results are consistent with it.

It is generally violated for weakly-coupled theories with one coupling (one field) 

In theories with many fields, it must be examined on a case-by-case basis. 

– For !�T/Eb & ⌘ & t�1
dec

the rate is still constant, but deviates significantly from
eq. (1.2). Here tdec is the average decay time of a single system, tdec ⇠ (�L)�1,
with L being the length of the simulation box.

– For t�1
dec

& ⌘ the rate follows the same time dependence as for the Hamiltonian
simulations.

• We propose that for a general system the applicability of the equilibrium formulae
(1.1), (1.2) requires an upper bound on the thermalization time,3

tth . Fb

!�T
. (1.5)

Since the ratio Fb/T sets the exponential suppression of the decay rate, it must
be bigger than unity. Hence the bound (1.5) is weaker than the naive requirement
tth . !�1

� which would follow from the mere comparison of the thermalization and
bubble growth rates. Nevertheless, it is always violated in the Hamiltonian dynam-
ics of a single scalar field, irrespective of the number of dimensions. For theories
with multiple fields, it may or may not be satisfied, depending on the details of the
interactions.

• We study another manifestation of the non-equilibrium dynamics accompanying the
bubble nucleation — the oscillonic precursors [52]. These are coherent localized oscil-
lations of the field preceding the bubble formation. We find that they get suppressed
in the Langevin simulations and disappear completely at strong friction. This is
consistent with the expectation that coupling to a heat bath erases non-equilibrium
features.

The above results were partially presented in [63]. In the rest of this paper we elaborate
on their derivation and give details of our analytical and numerical methods.

The paper is organized as follows. In Sec. 2 we describe our setup. Following the
standard formalism, we derive the critical bubble solution and the Euclidean decay rate,
including the prefactor. In Sec. 3 we introduce the discretized version of the theory, discuss
its thermal properties and estimate, both analytically and numerically, its thermalization
time. Section 4 is dedicated to the Hamiltonian simulations of false vacuum decay. We
recover the critical bubble profile, describe the measurement of the decay rate and perform
a detailed comparison with the Euclidean prediction. In Sec. 5 we model the coupling of the
theory to an external heat bath by supplementing its equation of motion with dissipation
and noise terms. We study how increasing the dissipation and noise modifies the dynamics
of the phase transition. In Sec. 6 we formulate the criterion for the applicability of the
standard equilibrium nucleation picture and point out that it is, in general, violated in
commonly studied field theories. In Sec. 7 we study oscillons preceding the formation of
the critical bubble and show that such coherent long-lived structures can only live in a
system with weak dissipation and noise. Section 8 contains discussion and outlook. Several
appendices contain technical details and auxiliary derivations.

3
In this criterion we assume that the temperature is high, T � !�, so that the transition is classical.

– 5 –

Effective free energy of the critical bubble

η ≫
ω−T
Eb
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Figure 12: Typical evolution of the field preceding the critical bubble formation at (t, x) = (0, 0).
We take T̃ = 0.13. Left: In the case of no dissipation and noise (⌘ = 0) we see several non-linear
waves—oscillons—propagating in the background of short, linear ultra-relativistic modes. Here,
one of the oscillons ‘collides’ with a larger-amplitude thermodynamic fluctuation, which appears
to trigger the decay event. Middle: In the case of moderate dissipation (⌘ = 0.1), the oscillonic
precursor to the critical bubble is still visible but does not survive beyond one or two oscillation
lengths. Right: Finally, at large dissipation (⌘ = 1) there remain no long-wavelength propagating
structures in the system. fig:2dsph

We run a series of simulations of the lattice �'4-theory and record the field history over
a large time interval preceding the decay. It is instructive to compare the histories obtained
at different values of the dissipation coefficient. Fig. 12 shows typical field profiles '(t, x)

for three values of ⌘. Recall that prior to the decay, most of the field’s energy is contained
in its freely-propagating, short, relativistic modes. Apart from these linear waves, at ⌘ = 0

we observe a population of slower-moving non-linear waves. They are quasi-periodic and
oscillate at low frequencies !o < 1. One of these waves eventually gives rise to the critical
bubble. At moderate dissipation, ⌘ ⇠ 0.1, the non-linear structures are still visible, but
they decohere and dissipate over a time comparable to their oscillation period. Finally, in
the diffusive limit, ⌘ & 1, the propagating non-linear structures disappear.

The non-linear waves, which populate the system at small dissipation and noise, are
known as oscillons [38]. They are localised, long-living solutions of classical equations of
motion, arising in theories with anharmonic potentials [39–42]. In cosmology, they have
been extensively studied as a part of non-equilibrium processes involving scalar fields, such
as the inflaton field, in the early Universe [43–48]. In false vacuum decay, the role of
oscillons as ‘precursors’ to the critical bubble has also been investigated before [26, 27, 49–
51]. Here we point out that oscillons are a part of non-equilibrium dynamics of the system,
on its way from an initially thermal state to the critical bubble formation. Their presence
is a consequence of inefficient thermalisation, tth > 2⇡/!�1

o . The strong coupling to the
thermostat, which is necessary for the validity of the Euclidean formalism, erases any such
coherent objects.

It is interesting to implement a quantitative test for the presence of the oscillonic
precursor. We proceed as in Ref. [27] and first produce the instantaneous envelope of each
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Figure 12: Typical evolution of the field preceding the critical bubble formation at (t, x) = (0, 0).
We take T̃ = 0.13. Left: In the case of no dissipation and noise (⌘ = 0) we see several non-linear
waves—oscillons—propagating in the background of short, linear ultra-relativistic modes. Here,
one of the oscillons ‘collides’ with a larger-amplitude thermodynamic fluctuation, which appears
to trigger the decay event. Middle: In the case of moderate dissipation (⌘ = 0.1), the oscillonic
precursor to the critical bubble is still visible but does not survive beyond one or two oscillation
lengths. Right: Finally, at large dissipation (⌘ = 1) there remain no long-wavelength propagating
structures in the system. fig:2dsph

We run a series of simulations of the lattice �'4-theory and record the field history over
a large time interval preceding the decay. It is instructive to compare the histories obtained
at different values of the dissipation coefficient. Fig. 12 shows typical field profiles '(t, x)

for three values of ⌘. Recall that prior to the decay, most of the field’s energy is contained
in its freely-propagating, short, relativistic modes. Apart from these linear waves, at ⌘ = 0

we observe a population of slower-moving non-linear waves. They are quasi-periodic and
oscillate at low frequencies !o < 1. One of these waves eventually gives rise to the critical
bubble. At moderate dissipation, ⌘ ⇠ 0.1, the non-linear structures are still visible, but
they decohere and dissipate over a time comparable to their oscillation period. Finally, in
the diffusive limit, ⌘ & 1, the propagating non-linear structures disappear.

The non-linear waves, which populate the system at small dissipation and noise, are
known as oscillons [38]. They are localised, long-living solutions of classical equations of
motion, arising in theories with anharmonic potentials [39–42]. In cosmology, they have
been extensively studied as a part of non-equilibrium processes involving scalar fields, such
as the inflaton field, in the early Universe [43–48]. In false vacuum decay, the role of
oscillons as ‘precursors’ to the critical bubble has also been investigated before [26, 27, 49–
51]. Here we point out that oscillons are a part of non-equilibrium dynamics of the system,
on its way from an initially thermal state to the critical bubble formation. Their presence
is a consequence of inefficient thermalisation, tth > 2⇡/!�1

o . The strong coupling to the
thermostat, which is necessary for the validity of the Euclidean formalism, erases any such
coherent objects.

It is interesting to implement a quantitative test for the presence of the oscillonic
precursor. We proceed as in Ref. [27] and first produce the instantaneous envelope of each
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Figure 12: Typical evolution of the field preceding the critical bubble formation at (t, x) = (0, 0).
We take T̃ = 0.13. Left: In the case of no dissipation and noise (⌘ = 0) we see several non-linear
waves—oscillons—propagating in the background of short, linear ultra-relativistic modes. Here,
one of the oscillons ‘collides’ with a larger-amplitude thermodynamic fluctuation, which appears
to trigger the decay event. Middle: In the case of moderate dissipation (⌘ = 0.1), the oscillonic
precursor to the critical bubble is still visible but does not survive beyond one or two oscillation
lengths. Right: Finally, at large dissipation (⌘ = 1) there remain no long-wavelength propagating
structures in the system. fig:2dsph

We run a series of simulations of the lattice �'4-theory and record the field history over
a large time interval preceding the decay. It is instructive to compare the histories obtained
at different values of the dissipation coefficient. Fig. 12 shows typical field profiles '(t, x)

for three values of ⌘. Recall that prior to the decay, most of the field’s energy is contained
in its freely-propagating, short, relativistic modes. Apart from these linear waves, at ⌘ = 0

we observe a population of slower-moving non-linear waves. They are quasi-periodic and
oscillate at low frequencies !o < 1. One of these waves eventually gives rise to the critical
bubble. At moderate dissipation, ⌘ ⇠ 0.1, the non-linear structures are still visible, but
they decohere and dissipate over a time comparable to their oscillation period. Finally, in
the diffusive limit, ⌘ & 1, the propagating non-linear structures disappear.

The non-linear waves, which populate the system at small dissipation and noise, are
known as oscillons [38]. They are localised, long-living solutions of classical equations of
motion, arising in theories with anharmonic potentials [39–42]. In cosmology, they have
been extensively studied as a part of non-equilibrium processes involving scalar fields, such
as the inflaton field, in the early Universe [43–48]. In false vacuum decay, the role of
oscillons as ‘precursors’ to the critical bubble has also been investigated before [26, 27, 49–
51]. Here we point out that oscillons are a part of non-equilibrium dynamics of the system,
on its way from an initially thermal state to the critical bubble formation. Their presence
is a consequence of inefficient thermalisation, tth > 2⇡/!�1

o . The strong coupling to the
thermostat, which is necessary for the validity of the Euclidean formalism, erases any such
coherent objects.

It is interesting to implement a quantitative test for the presence of the oscillonic
precursor. We proceed as in Ref. [27] and first produce the instantaneous envelope of each
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Figure 12: Typical evolution of the field preceding the critical bubble formation at (t, x) = (0, 0).
We take T̃ = 0.13. Left: In the case of no dissipation and noise (⌘ = 0) we see several non-linear
waves—oscillons—propagating in the background of short, linear ultra-relativistic modes. Here,
one of the oscillons ‘collides’ with a larger-amplitude thermodynamic fluctuation, which appears
to trigger the decay event. Middle: In the case of moderate dissipation (⌘ = 0.1), the oscillonic
precursor to the critical bubble is still visible but does not survive beyond one or two oscillation
lengths. Right: Finally, at large dissipation (⌘ = 1) there remain no long-wavelength propagating
structures in the system. fig:2dsph

We run a series of simulations of the lattice �'4-theory and record the field history over
a large time interval preceding the decay. It is instructive to compare the histories obtained
at different values of the dissipation coefficient. Fig. 12 shows typical field profiles '(t, x)

for three values of ⌘. Recall that prior to the decay, most of the field’s energy is contained
in its freely-propagating, short, relativistic modes. Apart from these linear waves, at ⌘ = 0

we observe a population of slower-moving non-linear waves. They are quasi-periodic and
oscillate at low frequencies !o < 1. One of these waves eventually gives rise to the critical
bubble. At moderate dissipation, ⌘ ⇠ 0.1, the non-linear structures are still visible, but
they decohere and dissipate over a time comparable to their oscillation period. Finally, in
the diffusive limit, ⌘ & 1, the propagating non-linear structures disappear.

The non-linear waves, which populate the system at small dissipation and noise, are
known as oscillons [38]. They are localised, long-living solutions of classical equations of
motion, arising in theories with anharmonic potentials [39–42]. In cosmology, they have
been extensively studied as a part of non-equilibrium processes involving scalar fields, such
as the inflaton field, in the early Universe [43–48]. In false vacuum decay, the role of
oscillons as ‘precursors’ to the critical bubble has also been investigated before [26, 27, 49–
51]. Here we point out that oscillons are a part of non-equilibrium dynamics of the system,
on its way from an initially thermal state to the critical bubble formation. Their presence
is a consequence of inefficient thermalisation, tth > 2⇡/!�1

o . The strong coupling to the
thermostat, which is necessary for the validity of the Euclidean formalism, erases any such
coherent objects.

It is interesting to implement a quantitative test for the presence of the oscillonic
precursor. We proceed as in Ref. [27] and first produce the instantaneous envelope of each
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η = 0 η = 0.1m η = m

Dynamics of vacuum decay
When equilibrium is violated, interesting features appear in the field evolution prior to the decay.

At small dissipation, we observe a population of nonlinear waves with  — oscillons.ω < m
They disappear when  and the system evolves due to the stochastic terms.η > 0.1m
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Figure 13: Oscillonic precursor to the critical bubble reconstructed from simulations, at T̃ = 0.13.
Each plot is the averaging over 200 realisations. fig:oscs

field configuration preceding the decay. For the real field, this is equivalent to the following
procedure. First, we remove the field average, so that h'̃(x, t)i = 0 over the region of
interest, e.g. the configurations shown in Fig. 12. Next, we take the Fourier transform
along the time dimension. We set the amplitude of the negative-frequency Fourier modes
to zero, and double the amplitude of the positive-frequency modes to conserve the energy.
Taking the inverse temporal-domain Fourier transform, we arrive at the Hilbert transform.
Finally, the signal envelope is simply the absolute value of this transform.

Starting from the space-time coordinates of each decay event, we trace backwards in
time along the envelope the trajectory (xosc, tosc) of the maximum peak. For each simu-
lation, we take the field amplitude '̃(xosc, tosc) along the resulting trajectories, and stack
them with respect to the reference nucleation time at t = 0. Examples of the average
precursors resulting from this procedure are shown in Fig. 13 for three values of the dissipa-
tion coefficient ⌘. The lifetime of the oscillon is clearly correlated with ⌘. The correlation
between the false vacuum decay suppression and presence of oscillons is worth exploring
further.

7 Discussion and conclusion
sec:concl

It has been clear that the Euclidean approach is not applicable when the initial state of the
system is not described by the thermal density matrix. For example, such is the situation
with black holes creating (almost) thermal but spatially anisotropic flux of radiation [52].
The discrepancy with the Euclidean decay rate in this case is already at the level of the
main exponential suppression [53–56]. In this paper we have pointed out that even if the
initial state is thermal, the discrepancy can still take place, albeit at the level of prefactor,
if the relevant degrees of freedom near the barrier are not coupled ideally to the thermostat.
The Euclidean rate then represents an upper bound which may never be reached in real
systems.

Our results have potential applications in cosmology (phase transitions in the Early
Universe and after freeze out) and condensed matter (experimental tests of false vacuum
decay in quantum simulators [15–17]).
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In the Hamiltonian dynamics, every critical bubble is preceded by an oscillon. 

Dynamics of vacuum decay

Stacking many oscillons together, we get the average oscillonic precursor to the critical bubble:

Johnson, Pîrvu, Sibiryakov, 2312.13364

We can track its trajectory.

In our system, the presence of oscillons indicate violation of thermal equilibrium near the barrier.

Thus, they are correlated with the diminishing decay rate.

But how deep is this correlation?..

Thanks to Dalila’s smart numerical routine.
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How general are these results? 

In 3+1 the thermalization is faster, but still no equilibrium in the Hamiltonian dynamics of a single field.

Adding more species does not automatically improve the thermalization condition.

Adding gauge fields? We don’t know yet.

How important are these results e.g. in cosmology? 
If you need an accurate prediction of the decay rate or for the effects pertaining to the dynamics of bubble 
nucleation — these results are important.

If you need an order of magnitude estimate or parametric dependence  — these results are (likely) not important.

Our results are not directly applicable to sphaleron transitions or e.g. production and collision of kinks. But we’re 
looking into this now.
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26Thermalisation time

(a) (b)

Figure 3: Thermalisation of long modes in the classical lattice theory (3.2), using the ensemble
of 100 simulations. (a) The initial spectrum (black) and the final spectrum (blue) at t = 5 · 106.
(b) The effective temperature (3.6) of the long modes with k < m (blue) and of the modes with
k > m (red). The width of the lines represents statistical uncertainty. In this simulation we take
Lm = 100, N = 2048. fig:therm

k < m is reduced artificially by a factor of 2, so that their effective temperature becomes
Te↵ = ah|⇡̃j |2ik<m = T̃ /2. The modified spectrum is shown in Fig. 3(a). We evolve the
resulting ensemble for a long time tsim ⇠ 107, and observe how the energy transfer from
the nearby modes with k > m restores the long modes power. The result of the experiment
is shown in Fig. 3(b). We see that Te↵ changes noticeably on the time scale t ⇠ 105, in
agreement with eq. (3.10). On a much longer time scale t & 107, it reaches the temperature
of the thermostat, and the equilibrium is restored.

These results agree with the previous studies of non-equilibrium dynamics in the �'4-
theory, which also reveal very long thermalisation times [32, 35]. Note that slow thermali-
sation is not a peculiarity of a (1 + 1)-dimensional theory, but is a feature of any one-field
theory at weak coupling. For example, the �'4-theory in 3 + 1 exhibits similar behavior
[35]. We conclude that the model (3.2) does not admit an efficient thermostat, and this
impacts the dynamics and rate of vacuum decay.

4 Thermal transitions in the Hamiltonian system
sec:sim

4.1 Critical bubble profile
ssec:sph

We begin the analysis of false vacuum decay in the classical lattice model (3.2). One of
the most important predictions of Euclidean theory is the shape of the critical bubble. We
would like to reconstruct it from our simulations and compare with eq. (2.3).

We use two independent reconstruction methods. Each method begins with preparing
an ensemble of states according to eq. (3.4). The states are then evolved until a decay is
detected (or until simulation timeout). The decay event is identified where and when the
absolute field amplitude exceeds a threshold value, |'̃| > 10. The field evolution across the
potential barrier is recorded, its dynamics prior to the decay and the growth of the bubble
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Initial and final spectra Effective temp. of long modes ( , 
blue) vs temp. of all modes (red)

k < m

We perform the numerical experiment estimating the thermalisation time of long modes 
in the Hamiltonian system.

The result agrees with the theoretical estimate

This observable is useful when the system deviates from equilibrium, and the difference
between Te↵ and T̃ is a measure of such a deviation.

3.3 Thermalisation of long modes
ssec:therm

We mentioned in Sec. 1 that the dynamics of thermal false vacuum decay crucially depends
on the rate of thermalisation between the thermostat and the relevant degrees of freedom
near the barrier. Hence, it is important to estimate the thermalisation time tth in the model
(3.2), which we do below, both analytically and numerically.

One can find tth by considering the Boltzmann equation for particle phase-space density
fp, see e.g. [36]. For clarity, let us restore the mass and coupling constant for the moment.
In (1 + 1) dimensions the leading processes resulting in the energy exchange between the
particles are the 2 $ 4 and 3 $ 3 scatterings which give comparable contributions into the
collision integral.3 For concreteness, let us focus on the former. Denoting the momenta of
incoming particles by p1, p2, we have

@fp1
@t

'
1

2!p1

Z
d~p2d~p3d~p4d~p5d~p6

(2⇡)52!p22!p32!p42!p52!p6

(2⇡)2�(2)(p1 + p2 � p3 � p4 � p5 � p6)|A2!4|
2

⇥

h
�fp1fp2(1 + fp3)(1 + fp4)(1 + fp5)(1 + fp6) + (1 + fp1)(1 + fp2)fp3fp4fp5fp6

i
.

(3.7)

Assume for simplicity that all particles have comparable momenta of order p. Then the
scattering amplitude is A2!4 ⇠ �2/!2

p, and the dominant contribution from the Bose-
enhancement factor is f5

p ⇠ (T/!p)5. This yields,

1

fp

@fp
@t

⇠
1

(2⇡)3
�4T 4

!11
p

, (3.8){cross-section}{cross-section}

whence we read off the thermalisation time

tth ⇠
(2⇡)3

m

✓
m3

�T

◆4 ⇣!p

m

⌘11
. (3.9){t_therm2}{t_therm2}

Note the steep increase of tth with the particle’s energy. The modes relevant for the decay
have energies !p ⇠ `�1

⇠ m. Their thermalisation predominantly takes place through
the interaction with modes of comparable energy. Substituting !p ⇠ m to eq. (3.9) and
switching back to the dimensionless units (eqs. (2.9) and (3.1)), we obtain

tth ⇠
(2⇡)3

T̃ 4
. (3.10){t_therm3}{t_therm3}

To check this estimate, we make the following numerical experiment. First, we switch
the sign of self-interaction in (3.2) in order to avoid dealing with decays. We prepare an
ensemble of initial states according to the equilibrium distribution (3.4), (3.5) (in (3.5),
one should change the sign of the last term). Then, the power in the long modes with

32 $ 2 scattering preserves the energy distribution due to (1 + 1)-dimensional kinematics.
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27Thermalisation with external heat bath
We perform the numerical experiment estimating the thermalisation time of long modes 
with the Langevin evolution.

Effective temperature of long modes ( , blue) and the 
temperature of the ensemble ( , red)

k < m
k > m

Figure 10: Thermalization of long modes in the classical system described by the Langevin equa-
tion (5.1) with ⌘̂ = 10�3 (left) and ⌘̂ = 10�2 (right). The Fourier modes with k < 1 are initially
prepared in a thermal state with the temperature Te↵ twice smaller than the temperature of the
thermostat T̂ = 0.1. The blue (red) line shows Te↵ of the modes with k < 1 (k > 1). The width of
the lines corresponds to the measurement uncertainty.

in agreement with the fluctuation-dissipation theorem. Every Fourier mode of the field � is
now coupled to the external heat bath, and its thermalization rate is set by the dissipation
coefficient rather than the interaction with other modes:

tth ⇠ ⌘̂�1 . (5.3)

This is true as long as ⌘̂ is larger than the inverse thermalization time in the Hamiltonian
system, ⌘̂ & 10�6.

We solve eq. (5.1) numerically using a 3rd order stochastic, spectral, operator-splitting
scheme [66], see Appendix C for details. We use the grid parameters listed in Sec. 3.1
and the time step h = 2.5 · 10�3. First, we repeat the numerical exercise performed in
Sec. 3.3 to study the thermalization rate. Namely, we take the lattice model (3.2) with a
positive sign of the self-interaction, prepare a suite of simulations in thermal equilibrium
around the vacuum, remove half of the power from the long modes, and evolve them with
the discretized version of eq. (5.1). Measuring the effective temperature of the long modes,
we monitor how quickly the heat bath restores the equilibrium. The results are shown in
Fig. 10 for the two values of the dissipation coefficient. They should be compared with
Fig. 4(b) (note the different time scale in the two figures) and confirm the validity of the
estimate (5.3).

Next, we return to the model with negative self-coupling. We prepare an ensemble
of simulations in thermal equilibrium around the false vacuum and let it evolve according
to the stochastic eq. (5.1). Counting the surviving configurations at different moments of
time we obtain a family of the survival probability curves lnPsurv(t) for different values
of T̂ and ⌘̂. A typical representative corresponding to T̂ = 0.1, ⌘̂ = 10�2 is shown in
Fig. 11(a) by the thick red line. It must be contrasted with the survival probability curve
of the Hamiltonian ensemble (⌘̂ = 0) with the same temperature (thin blue line). We see
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The result agrees with the estimate .tth ∼ η−1
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In simulations, we take  and  (in units of mass).L = 100 a ≃ 0.01

The plots below demonstrate insensitivity of the decay rate to  and .L a
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Figure 17: Dependence of the measured decay rate in the Hamiltonian simulations on (a) the
lattice size L at fixed spacing a = 1.2 · 10�2 and (b) the spacing a at fixed size L = 100. The
ratio of the time step to the lattice spacing h/a = 0.82 is fixed in both cases. Error bars show the
statistical uncertainty of the measurements.

Finally, we directly explore the dependence of the decay rate on a. Fig. 17(b) shows
ln � measured in ensembles of simulations with different a and fixed box size L = 100. We
see that the results are consistent with each other within the statistical uncertainty. The
latter is �stat

ln� ⇠ 0.1 for the two sets of simulations at a = 1.2 · 10�2 and a = 2.4 · 10�2, and
thus we conclude that the systematic error is below this value.

C.3 Operator-splitting scheme for the Langevin dynamics

Here we outline the operator-splitting method to solve the Langevin equation (5.1). We
write it again as a system of first-order equations

(
�̇ = ⇡

⇡̇ = �� � � � s�3
� ⌘̂⇡ + �⇠̂ ,

(C.10)

with �2 = 2⌘̂T̂ . If the force ⇠̂(t) were a smooth function of time, we could proceed as
before and write the solution between t and t + h as in eq. (C.2), where O is the operator
associated with the system (C.10). The force and linear dissipation terms in (C.10) would
belong to the linear part of O, and the evolution due to the linear part could still be solved
exactly.

Complications arise because ⇠̂(t) is not smooth: it is a white noise having arbitrarily
sharp variations. Developing accurate numerical scheme for this case is non-trivial [106].
The idea is to replace eqs. (C.10) on every time step by another system with a regular
force term in such a way that the solutions of the two systems have the same statistical
properties, up to the required order of precision. The simplest choice would be replacing
⇠̂(t, x) by a sequence of independent Gaussian random variables ⇠t

i
with zero mean and

variance ⌦
⇠ti⇠

t

j

↵
=

1

h
·
�ij
a

, (C.11)
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We use this to put the upper bound on the systematic error of the decay rate measurement.
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(a) (b)

Figure 15: (a) Relative energy non-conservation of the L-N operator-splitting scheme (C.8) for the
Hamiltonian evolution (C.3) (s = +1). Here T̃ = 0.1, h/a = 0.8192. (b) Two field configurations,
which are evolved from the same initial state with h/a = 0.8192 (black), 0.4096 (red), at the moment
of decay at t = 2473.14. We take T̃ = 0.1. fig:numtest1

C.2 Operator-splitting scheme for the Langevin dynamics

Here we outline the operator-splitting method to solve the Langevin equation (5.1). We
write it again as a system of first order equations

(
'̇ = ⇡

⇡̇ = �' � ' � s'3
� ⌘⇡ + �⇠

(C.9){Eqs2}{Eqs2}

with � = 2⌘T . It is possible to proceed as with the deterministic equation and write the
solution between t and t + h as in eq. (C.4), where O is the operator associated with the
system (C.9). The additive noise and linear dissipation terms in (C.9) belong to the linear
part of O, and the evolution due to the linear part can still be solved exactly. The time-
discrete version of the write noise ⇠(t, x) is a sequence of independent Gaussian random
variables ⇠t(x) with zero mean and variance

⌦
⇠t(x)⇠t(x0)

↵
=

1

h
�(x � x0) . (C.10)

However, such treatment of the stochastic term reduces the order of convergence to at most
1, regardless the order of the subsequent splitting [60]. To achieve better convergence, the
operator O needs to be modified [61, 62].

C.2.1 3rd order scheme

Let ('t,⇡t) be the solution of (C.9) at time t. Following [37], we write the solution at time
t+ h as  

't+h

⇡t+h

!
= ehO3

 
't

⇡t

!
, (C.11){EqSol3}{EqSol3}
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Hamiltonian dynamics

We use the 4th order pseudo-spectral, operator-splitting scheme. 

The plots below show that it is enough to take  to achieve the relative energy non-
conservation .

h /a ≃ 0.8
≲ 10−6

Relative energy variation Two decaying configurations evolved 
from the same initial state, with 

.h /a = 0.4, 0.8
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Langevin dynamics

Figure 18: Measurement of the thermal mass in eq. (C.24) in the ensemble evolved using the
scheme with (�, �) = (3, 3), and h = 2.5 · 10�3, T̃ = 0.1, ⌘ = 1. The average is over 100 realisations
in the ensemble and over 200 sample points for each realisation, evenly distributed between t = 0
and t = tf = 40, see Fig. 17. The fit uses first 40 modes; the black dashed line corresponds to
the best-fit value of mth, the blue and red dash-dotted lines correspond to the bare mass and the
one-loop thermal mass, respectively. fig:app:meff

of Te↵ during the field evolution with a large dissipation coefficient ⌘ = 1, averaged over
100 realisations. The realisations are prepared in the thermal state with T̃ = 0.1, and we
see that, on average, Te↵ = T̃ with the required precision. Fig. 18 shows the measured
dispersion relation (C.24) in the same ensemble. The one-loop thermal mass prediction is
m2

th = 1+3T̃ /2 = 1.150 (we take the positive sign of self-interaction), and the measurement
gives m2

th = 1.141. The . 1% discrepancy is partially due to higher-loop thermal corrections
to the mass. Indeed, the 2-loop contribution is expected to be

�m2
th,2�loop / T̃ 2 , (C.25)

which gives ⇡ 1% correction at T̃ = 0.1.

C.3 Box size and lattice spacing

All numerical results in the main text were obtained for the lattice theory (3.2) defined in
a box of size L with periodic boundary condition. To apply these results to the continuum
theory (2.1) in the thermodynamic limit, we have to make sure that both L and the lattice
spacing a are well separated from the scales where the dynamics relevant for the decay
happens.

The finite-L correction to the critical bubble is exponentially suppressed as long as L is
much bigger than the bubble size. Next, the finite-L correction to the thermal mass (2.10)
is estimated as (in units (3.1))

�m2
th,L /

T̃

L
. (C.26)

– 36 –

We use the 3rd strong order pseudo-spectral, operator-splitting scheme. 

The timestep is  at  and  at .h /a ≃ 0.25 η ≲ 1 h /a ≃ 0.1 η > 1

Dispersion relation measured in simulations (black), compared 
with the free (blue) and thermally-corrected (red) ones.

Effective temp. of long and short modes 
measured during the simulation.

We took it from [Telatovich, Li, 1706.04237] but corrected their mistake.
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4

FIG. 4. Decay rate measured in simulations as function of
the dissipation coe�cient ⌘ for several values of temperature.
The rate is normalized by the prediction of Euclidean theory,
Eq. (5). The red dashed line shows the prediction of classical
statistical theory, Eq. (2).

(7), although we have verified that the evolution becomes
insensitive to them after a thermalization time tth ⇠ ⌘�1.

We observe that if ⌘ & 10�3m the survival probability
curves lnPsurv(t) follow straight lines. This is expected,
since now tth < tdec and the classical Zeno e↵ect is ab-
sent. However, their slope is still less than the Euclidean
prediction, see e.g. the red thin curve in Fig. 1. The mea-
sured rate �(⌘, T ) grows as we increase ⌘ until it reaches
a maximum at ⌘ ⇠ 0.3m where it deviates from �E(T )
by only 40%. At larger ⌘, it decreases again, consistent
with Eq. (2). This behavior is shown in Fig. 4.

At ⌘ ! 0, the rate �(⌘, T ) smoothly tends to the value
measured in the Hamiltonian system which, as we saw,
is significantly lower than �E(T ). To further substanti-
ate this result, we perform the following numerical ex-
periment. We evolve an ensemble of simulations with
Eq. (13) for t � ⌘�1, allowing all surviving realizations to
reach equilibrium with the heat bath. Then, we abruptly
decouple them from the bath by setting ⌘ = 0. We find
that the survival probability curve exhibits a break upon
transitioning from Langevin to Hamiltonian time evolu-
tion, as shown in Fig. 5. The final slope is consistent with
Eq. (12), confirming that this result does not su↵er from
any systematics associated with the choice of Gaussian
initial conditions (6), (7).

Violation of equilibrium criterion — We see from
Fig. 4 that the decay rate is closest to Eq. (2) at ⌘ & 0.1m
when the thermalization time is comparable to the in-
verse mass, and deviates from it at smaller ⌘ when the
thermalization time is longer. This suggests associating
the deviation with the lack of thermal equilibrium dur-
ing the bubble nucleation process, whose dynamical time
scale is set by !� =

p
3m (see Eq. (4)). Indeed, in sim-

ple mechanical systems with one degree of freedom the
applicability of Eq. (2) is known to require [26]

⌘/!� > T/Eb , (15)

FIG. 5. Break in the survival probability curve upon tran-
sitioning from Langevin (⌘ = 0.1m) to Hamiltonian (⌘ = 0)
evolution at t = 0. The temperature is �T/m3 = 0.1.

where Eb is the height of the barrier. Otherwise, Eq. (2)
overestimates the rate. The condition (15) ensures the
Boltzmann distribution in the phase space close to the
barrier. One can extend it to multi-dimensional systems,
including field theory [43] where Eb coincides with the
bubble energy. Note that for fixed ⌘, the condition (15) is
always satisfied at a low enough temperature. Thus, the
rate �(⌘, T ) is expected to approach Eq. (2) from below
at T ! 0 for any ⌘ > 0. This is consistent with the trend
exhibited by the simulation data in the range 10�3m .
⌘ . 0.1m (see Fig. 4), though the measured rate is still
far from the limit for the explored temperatures.
The situation is di↵erent for the Hamiltonian system

with ⌘ = 0. In this case, we propose to replace Eq. (15)
with a condition on the thermalization time,

tth <
Eb

T!�
. (16)

Comparing with Eq. (10), we see that decreasing the tem-
perature does not help – quite the opposite: the violation
of condition (16) becomes stronger as the temperature
decreases. This conclusion is not tied to the peculiarities
of (1 + 1)-dimensional theory. For example, in classical
��4 theory in (3+1) dimensions the thermalization time
scales as tth / m/(�T )2, whereas Eb / m/� and thus
Eq. (16) is always violated as long as T < Eb, i.e. as long
as the vacuum decay is exponentially suppressed.
In theories with more than one coupling, e.g. in the

presence of additional interacting fields, the condition
(16) must be examined case by case. The equilibrium
theory is expected to work and Eq. (1) for the rate to be
valid only if this condition is fulfilled. Otherwise, Eq. (1)
provides an upper bound on the decay rate.
Discussion — The discrepancy between the true rate

of thermal false vacuum decay and the Euclidean theory
prediction is at the level of the prefactor and may not
be important for applications which require only order-
of-magnitude estimates. Still, it has deep conceptual im-
plications revealing the non-equilibrium nature of bub-
ble nucleation dynamics. Thermal false vacuum decay
turns out not to di↵er fundamentally from the decay un-

Let’s make the following numerical experiment.

Evolve the ensemble with non-zero      for                so that all surviving configurations reach 
equilibrium with the heat bath.

Decouple the ensemble from the heat bath by setting           .

Langevin vs Hamiltonian evolution (               )η = 10−2

The decay rate changes abruptly to the one that we got before for the Hamiltonian evolution.

 

 

η t ≫ η−1

η = 0

Thus, the deviation of the rate from equilibrium is really due to the field dynamics near the barrier.



More observables
Shape of the critical bubble 

32

Dynamics of bubble nucleation 

Should we compute the bubble using the bare potential or an effective potential?

If effective, which fields to include and when?

ϕb(x)

Euclidean theory tells us little about how the critical bubble actually forms out of thermal fluctuations.

This dynamics is quite interesting: bubble velocities, oscillonic precursors…

Gleiser, Kolb… hep-ph/0409179, 0708.3844

Johnson, Pîrvu, Sibiryakov, 2312.13364
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Take many simulations, synchronise them in space and time, produce the average.
x

Figure 1: The sphaleron in the theory (2.1).
fig:sph_th

This solution is shown in Fig. 1. Its characteristic size is ` ⇠ m�1.
The most important prediction of the tree-level Euclidean theory is the sphaleron

energy Es. Using eq. (2.8), we obtain

Es =

Z
dx

✓
�02
s

2
+

m2�2
s

2
�

��4
s

4

◆
=

4m3

3�
. (2.9){Esph}{Esph}

The semiclassical approximation used in the decay rate formula (1.1) is valid as long
as Es/T � 1. We see that this condition is equivalent to the condition (2.6) that the
1-loop correction to the effective potential is small (and higher loops can, therefore,
be neglected). Importantly, the leading observables (2.8), (2.9) are evaluated using
the bare mass m rather than the thermal mass mth. In other words, fluctuations
of the tunneling field � do not contribute to the tunneling potential; instead, their
effect is captured by the fluctuation determinant. In general, to modify the tunnel-
ing potential, one needs to add other, non-tunneling fields to the action (2.1) (see,
e.g., [26]). The additional fields can back-react strongly on the tunneling field, thus
changing the sphaleron and the barrier energy.

2.3 Euclidean decay rate

In 1+1 dimensions, the Euclidean decay rate is related to the imaginary part of free
energy of the system as follows [2, 5–7].

�E =
1

L
·

p
|↵�|

⇡T
ImF . (2.10){G_E}{G_E}

Here L is the size of the system and ↵� is the eigenvalue of the unstable mode around
the saddle point. We compute this expression to 1-loop in the theory (2.1). To find
F , consider the partition function

Z = he�H/T
i =

Z
[d�] exp

⇢
�

Z
d⌧dx

✓
(@µ�)2

2
+

m2�2

2
�

��4

4

◆�
. (2.11){Zgen}{Zgen}
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Take many simulations, synchronise them in space and time, produce the average, pinpoint the critical bubble.
We employ two different reconstruction routines. They agree with each 
other and with the Euclidean prediction.

x
Figure 1: The sphaleron in the theory (2.1).

fig:sph_th

This solution is shown in Fig. 1. Its characteristic size is ` ⇠ m�1.
The most important prediction of the tree-level Euclidean theory is the sphaleron

energy Es. Using eq. (2.8), we obtain

Es =

Z
dx
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The semiclassical approximation used in the decay rate formula (1.1) is valid as long
as Es/T � 1. We see that this condition is equivalent to the condition (2.6) that the
1-loop correction to the effective potential is small (and higher loops can, therefore,
be neglected). Importantly, the leading observables (2.8), (2.9) are evaluated using
the bare mass m rather than the thermal mass mth. In other words, fluctuations
of the tunneling field � do not contribute to the tunneling potential; instead, their
effect is captured by the fluctuation determinant. In general, to modify the tunnel-
ing potential, one needs to add other, non-tunneling fields to the action (2.1) (see,
e.g., [26]). The additional fields can back-react strongly on the tunneling field, thus
changing the sphaleron and the barrier energy.

2.3 Euclidean decay rate

In 1+1 dimensions, the Euclidean decay rate is related to the imaginary part of free
energy of the system as follows [2, 5–7].

�E =
1

L
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ImF . (2.10){G_E}{G_E}

Here L is the size of the system and ↵� is the eigenvalue of the unstable mode around
the saddle point. We compute this expression to 1-loop in the theory (2.1). To find
F , consider the partition function

Z = he�H/T
i =
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Figure 4: Evolution of the potential Uav. and kinetic Kav. energies of the averaged field profile
at T̃ = 0.1 (solid black), T̃ = 0.2 (dashed blue). The averaging is over 250 simulations. (a) In
the first method, the maximum of Uav. (the dash-dotted line) determines the moment t = t⇤ of the
critical bubble nucleation. (b) In the second method, the nucleation moment is determined by the
minimum of Kav.. fig:Uav(t)

Figure 5: Critical bubble profile reconstructed from simulations using two different methods (solid
blue and magenta). Dashed black line is the tree-level Euclidean prediction (2.3). Solid green line
corresponds to eq. (2.3) where the thermal mass (2.10) is used instead of the bare mass.fig:Sph(t)

are monitored. Next, one needs to synchronise all field histories with respect to the decay
event, and produce the averaged field evolution across the barrier. Finally, one needs to
pinpoint the critical bubble.

In the first method, the above steps are performed by studying the evolution of long
modes with ! . 1. Importantly, their potential energy Ulong(t) (which includes the gradient
energy) switches from positive to negative values shortly after the system passes through
the barrier. The behavior of Ulong(t) in different simulations looks similar in the range of
negative values, i.e. after the critical bubble formation. This is because after the bubble
nucleation, the system quickly forgets its history in the false vacuum region. We shift the
recorded simulations in time, relative to each other, to achieve the maximal correlation

– 12 –

ϕ

x

method 1

method 2

theory

``thermal critical bubble’’:
m → mth ϕb(x)in

Reconstruction

No surprise here: the critical bubble is determined by the bare potential; fluctuations contribute to the prefactor.

Things can be different with many fields!


