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Motivation

The decay of a metastable state (false vacuum) plays an important role in many branches of physics,
including particle physics and cosmology.

GW power

@ First order phase transitions in the early universe .
sensitvity
Colliding bubbles generate gravitational waves

see, e.g., Caprini et al, 1910.13125

® EW baryogenesis

frequency

Bubble wall moving through plasma generates baryon number
for review see Bodeker, Buchmuller, 2009.07294

' ili Hi tential
® Higgs vacuum metastability iggs potentia

In the present-day Universe, the decay probability is small enough.
But this can change in extreme environments.

. . You are here
for reviews see Espinosa et al, 1505.04825 s A ..

-~
Andreassen et al, 1604.06090 e AN

® Experimental tests of nucleation theory

\
RG improved,

Zenesini et al, Nature Physics 20, 558-563 (2024) — first experimental result



https://www.nature.com/nphys

Methods 1 AT,

Studies of decay of metastable state have more than a century long history.

We are interested in the developments in the context of high-energy physics, field theory.

@ Euclidean — equilibrium — approach

It applies to systems whose metastable state is in local equilibrium — it can be assigned a temperature.

Milestones:
@ Gibbs 1875 — first discussion of the critical bubble, its energy in the thin-wall approximation
; @ Wigner 1937 — Transition State Method for chemical reactions: saddle point, negative mode, zero modes
;é @ Langer 1969 — Classical-statistical theory of metastability: many d.o.f. + external heat bath
E ‘ Affleck 1980 — Quantum-statistical theory of metastability: 1 d.o.f., no external heat bath
E @ Linde 1982 — Decay of false vacuum at finite temperature: field theory, different regimes

™.




Decay of metastable state N

2
Consider the quantum-mechanical system with the Hamiltonian H = 5— + V(g) and the “tunnelling” potential.
m

v

Y(+:) ® P, =1- e " — survival probability in the metastable state
y at times not very short and not very long
\‘*/qu—{;j:) [~ e B — decay rate in the WKB approximation
it shows the main exponential suppression;
we will talk about the prefactor later

a
( 0 9 a\/ 1 B=2[ dgy/2mV(q) — suppression exponent
groun

0

metastable state True vacuum
region

-v(9)

@ Interestingly, B = Sglq,], where g, is the bounce trajectory.

Classical o~
ground state =0

2
d
Sp = [dr % <d—q> + V(g) — Euclidean action associated with H a 9

T

dzq a(_ V) H i ; ; 1T : ” gt v
m—=— — — classical equation of motion in the “imaginary” time 7
dr? dq
Classical particle moves
q(£0) =0, ¢,0)=0 — boundary conditions selecting the bounce along the bounce trajectory

they are uniquely associated with the false vacuum state

So one can solve Newton’s equation instead of the Schrédinger equation!

Price to pay: WKB approximation; vacuum boundary conditions.
not relevant here, but for non-equilibrium states...




Decay of metastable state | T,

1
Consider the scalar field theory with the Lagrangian L = — E(()ﬂgb)z — V(¢) and the “tunnelling” potential.

in the configuration space

® Again, P, =1—e¢71" where" ~ e B is the decay rate per unit space. \/ (\P)

Sury

Again, B = Sg[¢,], where S is the Euclidean action associated with L:

2
S 1[d_,d 1 [ o¢ 2+1 %\ vy
=—\|dxdr | = | — — | —
E g2 2\or) 2\ ox Py =0
T _ i Classical (P
small coupling constant justifying WKB; in QM it is ip’/p? around state \\.

Tunnelling from the

. ) ) ) ) ground state
The bounce is found by solving the (classical) Klein-Gordon equation

(8% + Oiﬁi)gb — V'(¢p) = 0in the “imaginary” time.

@ Again, one needs to know the boundary conditions.

Assuming spherical symmetry of the bubble,
Real-time

domai —

omain \\ qbb(r—>oo)=0,r= 1_2+x2
Euclidean w So one can solve the KG equation instead of the (infinite-
domain dimensional) Schrédinger equation!

FV Coleman 77; Callan, Coleman 77
Price to pay...

8 a b g BUbble of true vacuum ®es < P o O & _ ‘ol
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Decay of metastable state L\L/ .

1
Consider the scalar field theory with the Lagrangian L = — E(Gﬂqﬁ)z — V(¢) and the “tunnelling” potential.

in the configuration space

Consider tunnelling from a thermally excited metastable state, with temperature 7.

As usual, ' ~ e, B = S;[¢,], where ¢, is the thermal bounce.

The temperature should not be too high — Boltzmann suppression

@® Boundary conditions for the thermal bounce? Thermal partition function implies
periodicity in the imaginary time.

Linde 82
Brown, Weinberg 07 bounce solution corresponding to tunnelling from the state with energy E V (Y)

/ Ex

I ~ Jd E e_%e_SE[Qb,E] ~ e—T—SE[%,E*]

—>  q,(t+ 1/T) = q,(7)

Tunnelling from an
excited state




Decay of metastable state AT,

1
Consider the scalar field theory with the Lagrangian L = — E(Gﬂqﬁ)z — V(¢) and the “tunnelling” potential.
in the configuration space

At sufficiently high T, the decay occurs classically, through the formation of special v ( }5)
thermodynamic fluctuation: critical bubble.

@ The critical bubble is described by the static solution of the equations of motion.

the energy of the critical bubble — barrier energy

E . .
—B b : Decay in the classical
["'~e™, B=— — Boltzmann suppression regime

-V (a)

Bounce solutions at
finite temperature

e/

1

w Periodic bounce

Static solution




Decay of metastable state Q .

The typical picture of false vacuum decay at finite temperature is as follows.

Periodic thermal bounces dominate at low T < quantum tunnelling

Static critical bubble dominates at large T < classical thermal jumps

= A(T)e 8D

|

o w A B Affleck 80
I exp. suppression LO B [7_) Typically, T, ~ m = ha,,
prefactor — “NLO” \
Depending on the tunnelling potential, the Chudnovsky 92
\ transition point can be smooth or only continuous.
\

We don’t know how the prefactor behaves around
\ this point: it may well be discontinuous.

vacuum suppression — [3,

-

Exponential suppression of vacuum decay
as a function of temperature




Going out of equilibrium % 2

@® The Euclidean formalism is, in general, not applicable to the decay of non-equilibrium initial states.

In particular, it does not determine vacuum boundary conditions for the semiclassical solution.

These can be found in a more general “in-in” formalism.

2105.09331
In many physical systems the initial state is not in thermal equilibrium.

o
\ /! °
w"\‘\\ trr ﬁ‘\\ o
1 T :
— P mn o ~ p—
’,/2 \\\\3 —] ~—— e —tr— — / ‘-\ o ®
—] > — / ®9
— [ = Bl pre—
Anisotropic flux of radiation - Particle collisions
A black hole in the Unruh vacuum .
Multicomponent radiation 2105.09331, 2111.08017 Kuznetsov, T1nyakov 97

Levkov, Sibiryakov 05
Demidov, Levkov 15

@ The Euclidean formalism does not capture real-time dynamics of vacuum decay.

. UooM .
This dynamics contains many interesting features that may be relevant for observations. G
Gleiser, Kolb et al, hep-ph/0409179, 0708.3844 T : ‘mb.
. ., ;
Pirvu, Johnson, Sibiryakov 23 & _/‘—\
. . e " . . o ! P
This may be important for cosmological first order phase transitions or in table-top experiments. T'~1 g‘- Dt ‘ j
. . o decay S.-' " :
® Actually, vacuum decay is, by definition, an out-of-equilibrium process! rate & bbbl
The validity of the Euclidean formalism should not be taken as granted. — P
2407.06263, 2408.06411 from 2312.13364
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Methods 2 ( .

Consider vacuum decay at finite temperature via classical thermal jumps of the field over the barrier. v (- #
i.e. at temperatures high (classical regime) but not too high (exponential — Boltzmann — suppression)

The decay happens through the formation of special thermodynamic fluctuation: critical bubble.

@ Real-time, classical, lattice simulations

They are applicable if occupation numbers of all relevant for the decay modes are big.
Milestones:

U4 Grigoriev, Rubakov, Shaposhnikov — Sphaleron transitions, kink-antikink pair production, Hamiltonian dynamics

@ Alford, Feldman, Gleiser — Vacuum decay, Langevin dynamics

@ Gould, Moore, Rummukainen — Vacuum decay, “multi-canonical sampling” + real-time evolution

<
4
First, we focus on the Hamiltonian evolution of a single field; later, on the Langevin dynamics as well. "-
i.e. no external heat bath i.e. with external heat bath % Y —
i t ~ti : . . sz;(. "
The goal is to test the predictions of the Euclidean theory and to see if anything Q/oq/
interesting happens before and during the critical bubble nucleation. <) 6 %
Pirvu, AS, Sibiryakov 2407.06263, 2408.06411 / g ¢ O
irvu, AS, Sibiryakov . s .
[ av
=




. TR
Simplest Setup (

0.6)2 m2d2 Ao
Scalar field theory in 1+1 dimensions: S = /dt dx (—( “;b) — 2¢ + jf '
Fv/ | b
]
- - 4m’ 6m* | By g7 0 Wy
® Euclidean theory predicts: £, =——, I'p= e Ev/ 2
31 s 27T =
barrier (critical bubble) energy TV

@ We want to measure the decay rate (among other things) in “first-principle” classical lattice simulations

We prepare a suite of simulations with the initial thermal Rayleigh-Jeans spectrum:

Fourier modes of the field and momentum
W v
1Py =TI, (|%|°)=T
(1% =TI, (|5]*) =

2 _ 2 2 _
Qj = 2(1 — cos kja)/a +mg k] = 2xj/L

2 2 30T lattice spacing box size
2m

thermal correction to the mass, < m2

...and evolve them until they decay (or simulation times out).

0.0 0.2 0.4 0.6 0.8 1.0
k

Measurement of the dispersion relation in
the theory with the stable potential

We checked that this is an equilibrium state by evolving the
theory with the stable potential using the Langevin equation.




What does it mean “decay rate”?

® Introduce survival probability P;,;.,(t)

For decays obeying the exponential distribution, it follows the law:

(we exclude early-time transients)

In Pygypyp(t) = const — 'L - ¢
AN

This is decay rate

Euclidean Theory

1-10° 2-10° 3-10°




First surprise

® Introduce survival probability P;,;.,(t)

For decays obeying the exponential distribution, it follows the law:

(we exclude early-time transients)

In Pygypyp(t) = const — 'L - ¢
AN

This is decay rate

Simulation vs Euclidean Theory

\

1-103 2-10° 3-10°
t

@® Decay rate found in simulations is smaller than the Euclidean prediction

@ Itis, moreover, time-dependent, getting even smaller with time




(4

What does it mean “thermal”? (

T

@® For the Hamiltonian evolution, it means the following:

3 A
e Long modes Al Short modes
e
|7
Relevant for the decay_/J Background for the long modes
u -
A8 =
Relevant
sub-system Thermostat

But thermalisation in the theory is very inefficient: for modes with @ ~ m ~ (bubble size)_l,
the thermalisation time is

(27)? . AT .
tip ~ ———, T=—<x1 (due to 2 — 4 and 3 —» 3 scattering processes)
T4 m?3
' ", 4 %0
VP /('; $3 P :a“




What does it mean “thermal”?

@® For the Hamiltonian evolution, it means the following:

3 Al
e Long modes Al Short modes
e
|7
Relevant for the decay_/J Background for the long modes
u -
A8 =
Relevant
sub-system Thermostat

But thermalisation in the theory is very inefficient: for modes with @ ~ m ~ (bubble size)_l,
the thermalisation time is

(27)? . AT .
= T=—<x1 (due to 2 - 4 and 3 —» 3 scattering processes)
T

m3

tih ~

® Compare this with the decay time: ,,. ~ (T'L)~!

In our simulations it happens that 7, > t,,. (hardly relevant for cosmology, but can be relevant for experiments)

This leads to the interesting effect.




Classical Zeno effect | T

@® Because of inefficient thermalisation, the initial power contained in the long modes
is preserved during the simulation.

@ The configuration which, due to a statistical fluctuation, has a higher initial long-
mode power decays faster. The one with lower power lives longer.

—> Statistical properties of the ensemble change with time: long modes cool down.

Effective temp. of long modes
for simulations whose lifetime is longer than t

0.097 e —all-modes %

o modes with k< 2m

%?“*Hmm
0.098 {{%{TT +H

—e—
—e—
——
——

0.096 modes-with-k-<-m

0 500 1000 1500 2000 2500
t

® Effective temp. of long modes drops by a few per cent during the run: enough to visibly suppress the decays.




e
- (
Classical Zeno effect e’

@® Because of inefficient thermalisation, the initial power contained in the long modes
is preserved during the simulation.

@ The configuration which, due to a statistical fluctuation, has a higher initial long-
mode power decays faster. The one with lower power lives longer.

—> Statistical properties of the ensemble change with time: long modes cool down.

Effective temp. of long modes
for simulations whose lifetime is longer than t

0.097 e -——all-modes

o modes with k<2m

H%?“HHHHH
0.008 ;HH +H
++{%{%%{

—e—
—e—
——
——

0.096 modes-with-k-<-m

0 500 1000 1500 2000 2500
t

@ Effective temp. of long modes drops by a few per cent during the run: enough to visibly suppress the decays.

@ Decay is a non-Markovian process (in this regime).

~
[

CL\' The longer we observe the system, the less chance it has to decay in the future: classical Zeno effect.

@ To find the unbiased rate, we extrapolate the slope of the survival probability curve to zero.

™.




Second surprise

® We measure the (unbiased) decay rate at different temps. and fit with the formula (recall that I'; = A exp(—E,/T))

1 B < critical bubbl
lnF(T):—ilnT—l—lnA—f critical bubble energy

T prefactor (with the zero mode excluded)
from the zero mode in the prefactor
One can measure A and B separately, using the ratio I'(T")/I'(T) to find B, with some reference temp. 7

Or one can make the 2-parameter fit, the result is the same (within the errorbars).

IN(F(T)/T(Tx)) ASIMIA

2 ¢ data 0.18

— fit -
1 = = theory 0.16T
\}\ o - T ! ¢
0 \ 0.14

\ 0.10 1

-2 >
\i 0.08

80 85 9.0 95 10.0 105 11.0 80 85 9.0 95 10.0 105 11.0
F-i -1

@® Critical bubble energy agrees with the Euclidean theory (<2% error bar)

® The measured prefactor is smaller by a factor ~8.

? Something wrong with thermalisation again? Violation of thermal equilibrium near the critical bubble?

. y & i -
' v/ g o g 4
S -

: m’ " —
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More evidence: Langevin evolution

We can reduce artificially the thermalisation time by coupling the system to an external heat bath.
+np—¢"+mip—Ap>=¢
(E(6,x)) =0, (&, )&, x)) = 20T — 1')6(x — x7)
=Pty ~n

Noise and dissipation change the dynamics of vacuum decay.
They don’t change the critical bubble.

Simulation at zero vs non-zero noise (1 = 10™%m)

0.00
.
—0.05}»
i \\\
. ~
~0.10F = \\\
>
3 _015F \ \\\\
QC. “ \ \\\ \
— -0.20 % \ o
. \ S
. ~
—-0.25 . <
i \ <
~0.30 %
‘ 1 \ 1
1-103 2-103 3-103
mt

® No Zeno effectaslongasy 2 I'L

@ Decay rate increases, but still below the Euclidean bound




Langevin dynamics: decay rate Q)

We observe the following behavior:

® As dissipation increases, I increases as well. It reaches maximum at 7 ~ 3 - 10~ !m,
then starts decreasing due to over-damping.

@ T tends to increase when T goes down.

Decay rate at various dissipation and temperature

Langer’s classical-statistical theory




Violation of equilibrium condition

In Physical Chemistry, the analog of Euclidean Theory is Transition State Theory (TST).

for review see Hanggi, Talkner, Borkovec, Rev.Mod.Phys. 62 (1990)
TST deals with particles (one or few d.o.f.) in the external heat bath, n > 0.

It is known that TST is violated if there is no equilibrium around the barrier.
The following condition must be satisfied:

> o 1
n E,

We can generalise this condition to Langevin dynamics of field theory.

This is done by careful examination of Langer’s work.

For the Hamiltonian dynamics of field theory, we suggest the following condition:

All our current and future results are consistent with it.
Effective free energ of the critical bubble
/ y

Fb

b, < 20
th S 7 F

@ It is generally violated for weakly-coupled theories with one coupling (one field)

@ In theories with many fields, it must be examined on a case-by-case basis.




Dynamics of vacuum decay

When equilibrium is violated, interesting features appear in the field evolution prior to the decay.

At small dissipation, we observe a population of nonlinear waves with ® < m — oscillons.

They disappear when n > 0.1m and the system evolves due to the stochastic terms.




o (
Dynamics of vacuum decay | T,

In the Hamiltonian dynamics, every critical bubble is preceded by an oscillon.
Johnson, Pirvu, Sibiryakov, 2312.13364

We can track its trajectory.
Thanks to Dalila’s smart numerical routine.

Stacking many oscillons together, we get the average oscillonic precursor to the critical bubble:

1.0

I
0.5 A / \ l/ 0.5
0.0 A Ai‘,w‘gl | / 0.0 by ':13;,.,‘;:‘,?-'::‘:,‘j:":::"\

05 \V/ \\/ —0.5 V —0.5 5‘@4

1.0 1.0

0.5

2 " " o AR
Rt o AL - - ANRCA LI AR . ........ 00 cisr e
LU P A N WA T WA SN ARG i
/ v v v PN
v
h= d’

—1.0 —1.0 —1.0 \\
-50  —40 =30  —20  —10 0 —50  —40  —30 —20  —10 0 -5  —40  —-30  —20  —10 0 7V
t t t \
£ |
In our system, the presence of oscillons indicate violation of thermal equilibrium near the barrier. LV a |
’/ 2/‘ .
Thus, they are correlated with the diminishing decay rate. [ g"ffgv

But how deep is this correlation?..




Discussion ( /; -

® How general are these results?
In 3+1 the thermalization is faster, but still no equilibrium in the Hamiltonian dynamics of a single field.
Adding more species does not automatically improve the thermalization condition.

Adding gauge fields? We don’t know yet.

® How important are these results e.g. in cosmology?

If you need an accurate prediction of the decay rate or for the effects pertaining to the dynamics of bubble
nucleation — these results are important.

If you need an order of magnitude estimate or parametric dependence — these results are (likely) not important.

Our results are not directly applicable to sphaleron transitions or e.g. production and collision of kinks. But we’re
looking into this now.
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Thermalisation time Q)

We perform the numerical experiment estimating the thermalisation time of long modes
in the Hamiltonian system.

(|@]%) Tt
N 0.22
3.0 \7'4 <
[ 0.20 :
2.5
\A 0.18 Las
2.0 A
______________ \ 0.16
1.5 \ N WAL
\/ W 0.14
1.0 : |
0.12
0.5
0.10 |
0.0 =T ————""70° 10 —10* 105  10°
k t
Initial and final spectra Effective temp. of long modes (k < m,

blue) vs temp. of all modes (red)

The result agrees with the theoretical estimate 15, ~




Thermalisation with external heat bath ( @
N

We perform the numerical experiment estimating the thermalisation time of long modes
with the Langevin evolution.

Tt

=103 A=10"2
0.12 4 012 Ll L
0.10 MMWWW i 0.10
0.08 Vil 0.08 -
0.06 0.06 @
0.04F7 ‘ 0.04
102 10 102 103
t t

Effective temperature of long modes (k < m, blue) and the
temperature of the ensemble (kK > m, red)

-1

The result agrees with the estimate 7,, ~ 7

L, § a0)
v f Oy (5
\ UV - -
. Y -4 g “ - ’0
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AU
_ . . {28
Box size and lattice spacing i’

In simulations, we take L = 100 and a ~ 0.01 (in units of mass).

The plots below demonstrate insensitivity of the decay rate to L and a.

InI’ A - - .
T=01,7=0 n 1 T=01,7=0

—13.0 —13.0
—13.5 —13.5
—14.0 —14.0+9® T

{ : 8 3 3 }
—14.5-1 —14.5
—15.0 —15.0

100 200 300 400 0.01 0.02 0.03 0.04 0.05
L a

We use this to put the upper bound on the systematic error of the decay rate measurement.




Accuracy of numerical scheme A T,

Hamiltonian dynamics

We use the 4th order pseudo-spectral, operator-splitting scheme.

The plots below show that it is enough to take i/a ~ 0.8 to achieve the relative energy non-
conservation < 1076,

O 106 ()]

2.5 l’

2.0 l
1.5

2

O{W ‘

| l I v

N o S
. N N‘\W/tﬂ/ \WMW

_> -0.5
0 200 400 600 800 1000 70.0 725 75.0 77.5 80.0 825 850 87.5 90.0
t X
Relative energy variation Two decaying configurations evolved
from the same initial state, with
hla =04,0.8.
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Accuracy of numerical scheme ( )
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Langevin dynamics

We use the 3rd strong order pseudo-spectral, operator-splitting scheme. Q2
2.4 -
We took it from [Telatovich, Li, 1706.04237] but corrected their mistake. 55 /////
// /‘/
The timestepis h/a ~ 0.25atn S 1and h/a ~ 0.1 aty > 1. 0 ///
" /
1.8 /:/
1.6 //,//,
Dispersion relation measured in simulations (black), compared : 1.4 /_r‘/ e
with the free (blue) and thermally-corrected (red) ones. 1o r‘“",,/
Lolmm T
~n9 0.2 0.4 0.6 0.8 1.0 1.2
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l 0.10075
0.106 ‘
‘ 0.10050
0.104 | ‘ I
0.10025 .
0.102 ‘ { [ [ { ‘ . Effective temp. of long and short modes
' 0.10000 d during the simulation
I ‘ ‘ l measure g .
0-100 ‘ l I 0.09975 ‘ I
0.098 l h l I 0.09950 I {
0.096 ‘ l 0.09925
0.094 0.09900
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t t




VA<
u u | m ¢ \ 1 f
Langevin vs Hamiltonian evolution AR

Sl

Let’s make the following numerical experiment.

® Evolve the ensemble with non-zero 77 for t > 5! so that all surviving configurations reach
equilibrium with the heat bath.

@® Decouple the ensemble from the heat bath by setting 7 = 0.

Langevin vs Hamiltonian evolution (7 = 107?)
0.00

—— Langevin
-0.01 \\ — — Hamiltonian

> —0.02 \

3 \

Q. _

c 0.03 \
—0.04

‘l—-t——._._‘

=
N
N —

-0.05 e
—200 -100 0 100 200 300 400

The decay rate changes abruptly to the one that we got before for the Hamiltonian evolution.

Thus, the deviation of the rate from equilibrium is really due to the field dynamics near the barrier.




More observables ( .

® Shape of the critical bubble ¢, (x)

Should we compute the bubble using the bare potential or an effective potential?

If effective, which fields to include and when?

® Dynamics of bubble nucleation

Euclidean theory tells us little about how the critical bubble actually forms out of thermal fluctuations.

This dynamics is quite interesting: bubble velocities, oscillonic precursors...

Gleiser, Kolb... hep-ph/0409179, 0708.3844
Johnson, Pirvu, Sibiryakov, 2312.13364




Critical bubble profile A,

Theory Simulation
. N\
[\ :
[\ ?
A I A P
024 / \ 27
o S
-4 -2 -XO: 2 4 0 2 4 X 6

Take many simulations, synchronise them in space and time, produce the average.




Critical bubble profile

1.4

1.2

1.0

0.6

0.4

0.2

0.0

Theory Simulation

N )

[\ .

/ \\ < 7 W
/ \

Take many simulations, synchronise them in space and time, produce the average, pinpoint the critical bubble.

We employ two different reconstruction routines. They agree with each
other and with the Euclidean prediction.

1.4
1.2
1.0
¢ 0.8
0.6
0.4
0.2
0.0

Reconstruction

method 1

method 2

------ theory

“thermal critical bubble”:
m — My, in @p(x)

e

—4 —2 0

No surprise here: the critical bubble is determined by the bare potential; fluctuations contribute to the prefactor.

G Things can be different with many fields!




