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Model building 6 
Advanced signal modeling:

convolutions, matrix element methods,
amplitude-based morphing models



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods



Goal of measurement – inference on a theory parameter

• So far – a lot of the material discussed modeling of background, 
general modeling uncertainties, and extract of a signal (discovery 
or limit setting)

• For established signals, the main goal is usually to measure as 
precisely as possible the value of parameter of the model, which 
connects to an underlying physics theory.

• In many cases, measured model parameters (e.g. mean of 
invariant mass) don’t map exactly to underlying theory parameters
(pole mass) because of smearing and bias effects in the detector.

• In this section we cover some examples of techniques to infer the 
underlying theory parameters    
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The great smearing machine
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Can we invert this proces?
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The detector as convolution

• The effect of the detector (and analysis machinery) on the theory 
parameter can be expressed as a convolution

Wouter Verkerke, NIKHEF

f (xreco ) = f (xtheo )∫ K (xreco ,xtheo )dxtheo

Theory distribution

Reconstructed distribution Kernel function
(resolution / migration)



The detector as convolution

• For a perfect detector the Kernel K is delta function

• But if detector response function to xtheo is (to good approximation) 
independent of the value xtheo over a wide enough range,
can then also represent problem as

• Here R is a resolution model, typically a Gaussian (or sum of 
Gaussians) 
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f (xreco ) = f (xtheo )∫ δ(xreco − xtheo )dxtheo

f (xreco ) = f (xtheo )∫ R(xreco − xtheo )dxtheo



Explicit modeling of the detector convolution

• Example: reconstruction of a particle theory mass mth, from a 
reconstructed invariant mass minv

• Note: probability model for observed minv
now directly describes parameter M of underlying theory

– Can also introduce parameters of resolution model as fittable model parameters

– But not always sensitivity (e.g. bias b is inseparable from M in above model)

f (minv |M ,Γ,b,σ ) = Gaussian(minv
th −minv

reco ,b,σ ) ⋅BreitWigner(minv
th |Γ,M )∫ dminv

th

Observed distr Fitted kernel function Fitted theory distribution



FFT Convolutions in RooFit

• Fourier convolution implement in FCONV operator

Wouter Verkerke, NIKHEF

Observed distribution Fitted kernel function Fitted theory distribution

RooWorkspace w("w") ;
w.factory("Landau::phys(e[0,150],mean[30,0,60],sigma[5,1,10])") ;
w.factory("Gaussian::resol(e,0,sigma_gauss[10,0.1,20])") ;
w.factory("FCONV::conv(e,phys,resol)") ;

RooDataSet* d = w.pdf("conv")->generate(*w.var("e"),1000) ;

RooFitResult* r = w.pdf("conv")->fitTo(*d,Save()) ;

CPU time of fit = 400msec (1000 events, 53 likelihood evaluations)

‘ex18.C’



A more ambitious example – per-event errors

• In some cases kernel function (resolution model) depends on other 
observables y, but not on x à Can also model try to model that.

• Example per-event errors 
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f (t |δt) = f (ttheo )∫ ⋅Gaussian(t − ttheo ,b,σ ⋅δt)dttheo

Resolution kernel depends on 2nd observable δt



A more ambitious example – per-event errors

• Example fit with resolution kernel using per-event errors

• For this physics example can
fit all kernel parameters (b,σ)
in addition to theory parameter τ Wouter Verkerke, NIKHEF

f (t |δt) = Gaussian(t − ttheo ,b,σ ⋅δ t) ⋅ f (ttheo )∫ dttheo
Observed distribution Fitted kernel function Fitted theory distribution



But it quickly gets very complicated

• Example 1: Convolution kernel constant in xreco

• Example 2: Convolution kernel constant in xreco, but depends on yreco

• What happens if resolution also varies in xreco?
– E.g. mass resolution depends on mass..

– Then in very quickly becomes numerically very complex (hard-to-solve)
– Numeric precision issues due to possible degeneracies.

• Solution in that case is discretize model for xreco
in which case convolution kernel K(xreco, xtheo) becomes a matrix

– Can no longer fit, but perform an unfolding procedure to obtain f(xtheo)
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f (xreco ) = Gaussian(xreco − xtheo ) ⋅ f (xtheo )dxtheo∫

f (t |δt) = Gaussian(t − ttheo ,b,σ ⋅δ t) ⋅ f (ttheo )∫ dttheo



Unfolding – basic idea

• Unfolding basic idea – from simulation you know for each event 
both xreco and xtheo à Use this to populate a response matrix K

• Essence of unfolding:                                                à f(Xtheo) = K-1 f(Xreco)
• Easy in concept, but difficult in practice 

à response inversion is numerically unstable
• Solutions to stabilize exist (‘regularization’) but invariably trade 

improved stability (‘reduced variance’) for bias (‘systematic effects’)
• Traditional solutions largely restricted to 1D histograms for this reason, 

but many new developments in recent years, driven by ML/AI
• Unfolding is a large and complex topic à See dedicated lecture by Lydia
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f (xreco ) = f (xtheo )∫ K (xreco ,xtheo )dxtheo



The experiment as convolution – one step back…
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What if we scale back our ambition 
one notch formulate convolution
and take 4-vectors of reco objects 
as observables in convolution?
f (xreco ) = f (xtheo )∫ K (xreco ,xtheo )dxtheo



The experiment as convolution – one step back…
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The detector as convolution

• Then convolution can be written in terms of parton kinematics
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f (xreco ) = f (xtheo )∫ K (xreco ,xtheo )dxtheo

fα (
!
x) = 1

σ
Mα

2
( !y) ⋅W ( !x, !y) ⋅dϕ( !y)∫

!y !
x

phase-space factor



The detector as convolution – matrix element methods

• The transfer function W(x,y) maps 
parton kinematics onto reco kinematics

• The transfer function factorizes by parton. Usually it is further 
approximated to also kinematically factorize in terms for E,φ,y

Wouter Verkerke, NIKHEF

fα (
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2
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Reconstructed jetME parton Parton-level jet

W ( !x, !y) = Wi (
!
xi ,
!
yi )

partons
∏ = Wi

E (Ei
reco ,Ei

part )
partons
∏ ⋅Wi

E (ϕi
reco ,ϕi

part ) ⋅Wi
E (yi

reco , yi
part )

typically Gaussian models 

!y !
x



The detector as convolution – matrix element methods

• The transfer function W(x,y) maps 
parton kinematics onto reco kinematics

• The transfer function factorizes by parton. Usually it is further 
approximated to also kinematically factorize in terms for E,φ,y
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The hard part of W(x,y) is dealing with gluon splittings
(makes mapping of partons to truth jets fuzzy)



What can you do MEM models? 

• The output of the Matrix Element Method is a probability model 
for events of a fixed reco-level topology (e.g. 2 jets, 1 lepton, MET) 
under a physics process hypothesis (e.g. ppàHàWWàqqlv)

• With MEM models for multiple hypothesis, can do hypothesis testing 
(event selection) in an Neyman-Pearson optimal way

Wouter Verkerke, NIKHEFBut with MEM we do!



Separate signal from background, or spin-0 from spin-2

• Ratio of MEM probability models is Neyman-Pearson optimal 
discriminant between two hypothesis

– Can be signal vs background

– Can also be two different types of signal

• Example MEM applications in HEP: ATLAS HàZZ decays:
– Comparison between pairs in Higgs spin/parity states 0+, 0-, 2+

Wouter Verkerke, NIKHEF



What can you do MEM models? 

• Given the computational complexity of MEM models, application
largely restricted to discriminating between two simple hypothesis

• For example Higgs Spin-2 vs Higgs Spin-0, 
or CP states of Higgs

• What about testing theories with parameters?
• Option 1 – brute-force modeling in MEM process

very significant increase in numerical computations,
validation difficult (does it work well for all α?)

• Option 2 – factorize parametric dependence (if possible)

for example when only magnitude of M depends on a, and not the 
differential distribution in y Wouter Verkerke, NIKHEF

𝑓 𝑥⃗|𝛼⃗ =
1
𝜎) 𝑀 !(𝑦⃗|𝛼⃗) . 𝑊(𝑥⃗, 𝑦⃗) . 𝑑𝜑(𝑦⃗)

𝑓 𝑥⃗|𝛼⃗ =
1
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What can you do MEM models? 

• Option 2 – factorize parametric dependence (if possible)

à Can also model certain parameters that effect distributions in y,
in case M consists of multiple amplitudes and parameters 
only affect rates of amplitudes
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𝑓 𝑥⃗|𝛼⃗ =
1
𝜎𝑚(𝛼⃗, 𝛼⃗#$%)) 𝑀 !(𝑦⃗|𝛼⃗#$%) . 𝑊(𝑥⃗, 𝑦⃗) . 𝑑𝜑(𝑦⃗)

𝑀 = 𝛼"𝑀" + 𝛼&𝑀&

𝑀 ! = 𝛼"! 𝑀"
! + 𝛼"𝛼& 𝑀"𝑀& + 𝛼&! 𝑀& !

𝑓 𝑥⃗|𝛼⃗ = 𝛼"!) 𝑀"
!(𝑦⃗) . 𝑊(𝑥⃗, 𝑦⃗) . 𝑑𝜑(𝑦⃗)

+𝛼"𝛼&) 𝑀"𝑀& (𝑦⃗) . 𝑊(𝑥⃗, 𝑦⃗) . 𝑑𝜑(𝑦⃗)

+𝛼&!) 𝑀& !(𝑦⃗) . 𝑊(𝑥⃗, 𝑦⃗) . 𝑑𝜑(𝑦⃗)

Original MEM formulation
for simple hypothesis



Amplitude extraction – exploiting quantum mechanics

• Theory parameters entangled with the detector response are difficult 
as some form deconvolution is needed, e.g. particle masses, 
particle lifetimes etc…

• But also plenty of theory parameters are effectively scaling 
amplitudes à factorization is widely possible! 

• Simplest (trivial) case: signal + background model à factorization 

• General case: signal(s) + background(s) + interference term(s)

Wouter Verkerke, NIKHEF



Amplitude modeling – the basics 

• When it’s possible to formulate p.d.f.s for observable distributions 
analytically, constructing probability models that sum physics 
amplitudes with interference effects is straightforward 

f (x | !c) =
ci ⋅Hi (

i
∑ x)

ci ⋅ Hi (x)dx∫
i
∑

f (x | s,b) = s
s+b

fs (x)+
b
s+b

fb(x)

Sum of p.d.f.s Sum of amplitudes 
Components are pdfs

Components 
are functions

Explicit
normalization
required

Both models
are p.d.f.s

Each component is positive definite Components can be negative,
sum must be positive definite



Amplitude modeling – amplitudes from MC generators

• In many LHC analyses, observable distributions can only be 
obtained from MC simulation chain. If so, this is also true for 
amplitudes

• How can we simulate observable distributions corresponding to 
individual amplitudes?

– Requires some support in MC generators à ability to selectively 
enable/disable individual amplitudes

– Amplitudes can be negative à How does this translate to an MC event 
sample? Potential difficulty (e.g. allow for negative event weights)

• But otherwise straightforward – no complex deconvolution or 
template morphing needed to deform template histograms

– Every physics model with (only) amplitude parameters can always be 
described as a weighted sum of amplitude templates (histograms!)

Wouter Verkerke, NIKHEF
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Generating a probability model from a Lagrangian

• Given a Lagrangian describing a Field Theory à can now model 
any transition amplitude (pp à X à Y) as a sum of real-valued 
amplitudes

• Consider example with two operators labeled SM and BSM,
with strengths gSM and gBSM respectively. Matrix Element is

• Transition amplitude is |M|2:

Wouter Verkerke, NIKHEF
f (x | !c) =

ci ⋅Hi (
i
∑ x)

ci ⋅ Hi (x)dx∫
i
∑

Mapping of Wilson coefficients to
template scale factors



The mapping of templates to operators

• Note that templates do not need to correspond one-to-one to
single operators or pure interference terms

• For 2 operator, any three independent pairs of gSM,gBSM values can 
generate templates that will span the whole parameter space. E.g. 

Wouter Verkerke, NIKHEF



The mapping of templates to operators

• Note that templates do not need to correspond one-to-one to
single operators or pure interference terms

• For 2 operator, any three independent pairs of gSM,gBSM values can 
generate templates that will span the whole parameter space. E.g. 
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Note that in this choice for T in there are 

no templates corresponding to pure interference terms

à All templates are positive definite!

even though the underlying templates are not (necessarily)

à This result is general: for any amplitude sum there is 

always a configuration of templates that are all positive



Rearranged amplitude sums

Wouter Verkerke, NIKHEF

SM

Interference

BSM

Mix



Rearranged amplitude sums
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B1

B2

B3 A1,A2,A3



The mapping of templates to operators

• Generalizing further, we will now work with 3 templates T1,T2,T3 that 
are sampled at arbitrary points in the (gSM,gBSM) parameter space

• The output probability model then takes the general form 

Wouter Verkerke, NIKHEF



The mapping of templates to operators

• Generalizing further, we will now work with 3 templates T1,T2,T3 that 
are sampled at arbitrary points in the (gSM,gBSM) parameter space

• The output probability model then takes the general form 

Wouter Verkerke, NIKHEF

This then only leaves the calculation of the appropriate coefficients aij

that occur in the weights functions w1,w2,w3 for templates T1,T2,T3

Their solution is found by solving the matrix equation



A more realistic physics example

• In many scenarios new physics can enter amplitudes in both the 
production and decay vertex of a t-channel process

• Corresponding matrix element of this process

Wouter Verkerke, NIKHEF

gSM
gBSM

gSM
gBSM



A more realistic physics example

• A little math shows we now need 5 independent templates

• And the template model can be written as 

ß 1
ß 2
ß 3
ß 4
ß 5



A concrete example VBH à H à WW

κSM
κHWW
κAWW

𝑻𝒐𝒖𝒕 Δ𝜙** 𝜅+,, 𝜅-.., 𝜅/..

=9𝑤0(𝜅+,, 𝜅-.., 𝜅/..) . 𝑻𝒊𝒏,𝒊(Δ𝜙**)

Tout

3 shared parameters à 15 terms in |M|2 expression à 15 input distributions needed
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Summary on amplitude models

• Amplitude sum models work (in terms of mathematics) 
exactly the same as template interpolation models. 

– But have difference choice of coefficient (polynomials instead of linear terms)

– Appropriate choice results in interpolation mechanism that is physically meaningful 
à no approximation in interpolation (beyond assumption of LO physics) 

– Freedom of choice in sampling points ensures that all sampled distributions 
are positive definite (no interference-only terms)

– Computationally fast & efficient process

• But need to watch configuration of sampled points 
à if interpolated states (e.g. measured minimum) 

is far from important samples then large scale factors
might be applied

à If so, blow-up of MC statistical fluctuations occurs…



Choosing optimal observables in amplitude models

• All templates in morphing models describe the same observable (here Δ𝜙!!)

• What observable has the most statistical power? In this example, a 
strategically chosen detector-level observable was used (Δ𝜙!!)

• General answer: use the Neyman-Pearson Lemma to construct 
an optimal observable (as was done for the earlier Higgs Spin MEM example)

𝑻𝒐𝒖𝒕 Δ𝜙** 𝜅+,, 𝜅-.., 𝜅/..

=9𝑤0(𝜅+,, 𝜅-.., 𝜅/..) . 𝑻𝒊𝒏,𝒊(Δ𝜙**)



Amplitude models & optimal observables à NBSI

• Q: What is the optimal observable in amplitude model with many terms 𝑻𝒊𝒏,𝒊

E.g. Δ𝜙!! might be optimal to distinguish |OSM|2 from |OBSM|2
but it is automatically optimal to distinguish between |OSM|2 and |OSMOBSM |?

• A: For i>2, there is generally not a single optimal observable 
to descriminate between all operator terms 𝐓𝐢𝐧,𝐢

• Effect: Sensitivity to constrain parameters κ reduced for values of κ≠0.
– Close to SM, κ =0, where Tin,SM will dominate all other terms it can still be close to optimal
– Notably weak measurements (with interval boundaries on κ far from 0), are further weakened

Wouter Verkerke, NIKHEF

𝑻𝒐𝒖𝒕 Δ𝜙** 𝜅+,, 𝜅-.., 𝜅/..

=9𝑤0(𝜅+,, 𝜅-.., 𝜅/..) . 𝑻𝒊𝒏,𝒊(Δ𝜙**)



Optimal sensitivity for amplitude models à NSBI 

• You can regain optimal sensitivity with a (small) paradigm change:
instead of aiming to model the likelihood, model the likelihood ratio

• Example case: HàZZàl+l-l+l- production in the offshell mass range,
which has significant S-B interference contributions
– 14 observables that describe 

Higgs production and decay kinematics

– Likelihood in any observable x for signal strength μ

Wouter Verkerke, NIKHEF

signal mix background non-interf. background



Optimal sensitivity for amplitude models à Likelihood ratios 

• Example case: HàZZàl+l-l+l- production in the offshell mass range,
which has significant S-B interference contributions
– Likelihood in any observable x for signal strength μ

– Likelihood ratio formulation of the same problem

Now free to model each ratio with a separate optimal observable

Wouter Verkerke, NIKHEF

signal mix background non-interf. background



Estimation Likelihood / Density ratios à ML/AI methods

• Constructing the optimal observables: 
– Use modern ML techniques to ‘learn’ the best way to model 

the density ratios in the 14-dimensional observable space 
– Train separate ML networks for each relevant pair of amplitudes

– Ratio of likelihood ratios recovers usual likelihood ratio test statistic
– Bonus: no more histograms à unbinned likelihood

𝑡4(𝑥⃗|𝜇) =
𝐿(𝑥⃗|𝜇)
𝐿(𝑥⃗|𝜇)

Illustration: A. Ghosh



Effect of optimal observables – Higgs offshell example 

• Comparison: template morphing histogram analysis vs
neural inference model with optimal observables
on the same data

68% confidence interval – template histogram morphing



Effect of optimal observables – Higgs offshell example 

• Comparison: template morphing histogram analysis vs
neural inference model with optimal observables
on the same data

68% confidence interval – neural SBI method



Implementation challenges of Neural SBI method

• Skipped over a very large amount of important details
– Calibration of NN is crucial à output is directly used in calculation of 

confidence intervals à no correction mechanism to account for 
data/simulation mismatches in formalism 

– Choice of denominator likelihood is crucial – it must be positive-definite 
in the entire analyzed region (otherwise ratio is ill-defined)

– Systematic uncertainties - implemented with a morphing-like approach 
using nuisance parameters and profiling over these

– Computation times huge – training took 4000 hours on a NVidia A100 GPU

• But bottom line is clear – optimal observable models based on 
NSBI estimates on MEM-like density ratio have great potential

– Excellent use case for Effective Field Theory measurements, now very 
ubiquitous at the LHC

– At present only a single LHC analysis has implement the method in full

Wouter Verkerke, NIKHEF



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Model building Statistical methods

The End
Advanced signal modeling techniques 


