Model bullding ©

Advanced signal modeling:
convolutions, matrix element methods,
amplitude-based morphing models

Wouter Verkerke, NIKHEF



Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Statistical tests with counting experiments

Modeling distributions

Test statistics for models describing distributions

Signal parameterization strategies

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Inference with nuisance parameters

Diagnosing inference on complex models

Advanced signal modeling techniques



Goal of measurement — inference on a theory parameter

e 5o far — a lot of the material discussed modeling of background,
general modeling uncertainties, and extract of a signal (discovery
or limit setting)

e [or established signals, the main goal is usually to measure as
precisely as possible the value of parameter of the model, which
connects to an underlying physics theory.

e |n many cases, measured model parameters (e.g. mean of
invariant mass) don’t map exactly to underlying theory parameters
(pole mass) because of smearing and bias effects in the detector.

¢ |n this section we cover some examples of techniques to infer the
underlying theory parameters
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The great smearing machine
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Can we invert this proces”?
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The detector as convolution

e The effect of the detector (and analysis machinery) on the theory
parameter can be expressed as a convolution

Theory distribution

f (xreco ) = f f (xtheo )K(xreco ? xtheo )dxtheo

/ \

Reconstructed distribution Kernel function
(resolution / migration)
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The detector as convolution

e [or a perfect detector the Kernel K is delta function

f ('xreco) = f f (xtheo )5(xreco - xtheo)dxtheo

e But if detector response function to X, is (to good approximation)
independent of the value x;,., Over a wide enough range,
can then also represent problem as

f (xreco) = f f ('xtheo )R(xreco - xtheo)dxtheo

e Here R is a resolution model, typically a Gaussian (or sum of
Gaussians)
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Explicit modeling of the detector convolution

e Example: reconstruction of a particle theory mass my,, from a
reconstructed invariant mass m,,,

f(m, |M ,*F,b,a) = f Gaussian(m." —m* ,b,0)- BreitWigner(m.' |I,M)dm."

inv ?

Observed distr Fitted kernel function Fitted theory distribution
E Gamma= 3.3 +1.3 04035__ E

mean = 91.67 + 0.68
sigma = 7.84 + 0.81
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e Note: probability model for observed m,,
now directly describes parameter M of underlying theory

— (Can also introduce parameters of resolution model as fittable model parameters

— But not always sensitivity (e.g. bias b is inseparable from M in above model)



‘ex18 .C’
FFT Convolutions in RooFit

e [ourier convolution implement in FCONV operator

RooWorkspace w("w")

w.factory ("Landau: :phys (e[0,150] ,mean[30,0,60] ,sigma[5,1,10])")
w.factory("Gaussian: :resol(e,0,sigma gauss[10,0.1,20])")
w.factory ("FCONV: :conv (e ,phys,resol)") ;

RooDataSet* d = w.pdf ("conv")->generate (*w.var("e"),1000) ;

RooFitResult* r = w.pdf ("conv")->fitTo (*d, Save()) ;

Observed distribution Fitted kernel function Fitted theory distribution
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CPU time of fit = 400msec (1000 events, 53 likelihood evaluations) <r



A more ambitious example — per-event errors

e |n some cases kernel function (resolution model) depends on other
observables y, but not on x =2 Can also model try to model that.

e Example per-event errors

f@|60)= [ f(t,,) Gaussian(t-t,, K

Case study — per-event errors

* Another common variant of this type of modeling
problem is the so-called ‘per-event’ error

e Example: observable = decay time distribution,
measured from reconstructed vertex.

— In absence of a detector resolution, exponential decay distribution

— Inreal life, distribution is convoluted with (Gaussian) reconstruction resolution

Resolution kernel depends on 29 observable &t

theo

Case study — per-event errors

¢ Visualization of decay function with variable resolution

Decay function (symmetrized)
convoluted with Gaussian resolution
at 4 different values of per-event error

f(t]|0t) = Decay(t) ® Gaussian(t,0,0 - 5t)

Projection of decay

03

025

Slices of

f decay(dt|dterr) at various

dterr

ARooPlotof T

1.

But vertex reconstruction gives also estimate of uncertainty
for every reconstructed vertex 2 the ‘per-event error’

— Can take this into account: well-reconstructed events carry more information

How? Scale assumed resolution with per-event error

f(t|6t)= Decay(t)® Gaussian(t,O

02

1
%0 8 6 4 2 0 2 4 6 8 1
dt

Full 2D-model:
Ft.at) = Ftld*Fo(d)

201

Shown here: projection ont

F(t) = Int [Fy(tldt)Fo(d) 1 dt. =
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A more ambitious example — per-event errors

e Example fit with resolution kernel using per-event errors

f(t|ot)= | Gaussian(t—t, ,b,o-0t)- f(t, )dt
theo theo theo
Observed distribution Fitted kernel function Fitted theory distribution
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. . 1 bias = 0.073 +0.055
e [or this physics example can

. sigma = 0.994 + 0.083
fit all kernel parameters (b,0) tau = 1.525 + 0.085 /
in addition to theory parameter T |
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But it quickly gets very complicated

e [Example 1: Convolution kernel constant in X,
f (xreco) = f GauSSian(xreco - xtheo) . f (xtheo)dxtheo

e [Example 2: Convolution kernel constant in X...,, but depends on Vy,...

f(t160) = [ Gaussian(t -1, ,b,0-60) f(t,, )dt

theo? theo theo

e \What happens if resolution also varies in X,..,?
— E.g. mass resolution depends on mass..
— Then in very quickly becomes numerically very complex (hard-to-solve)

— Numeric precision issues due to possible degeneracies.

e Solution in that case is discretize model for X,
in which case convolution kernel K(X.eco, Xineo) DECOMES @ matrix

— Can no longer fit, but perform an unfolding procedure to obtain f(Xine)

Wouter Verkerke, NIKHEF



Unfolding — basic idea

e Unfolding basic idea — from simulation you know for each event
both X,eco @aNd Xineo =2 Use this to populate a response matrix K

/

Truth Reconstructed migration probabilities

>400F ~=wc > : >
10} Landau(5,2) < G300k — MC total £ (0]
~300 — data “; - J; -
g Landau(6,1.8) S g Dbackground 2 )
3 E o E 9
zZ 200 [e) = 200 -*-data (@] :l—

Overflow bin
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P; / GeV P;(rec) / GeV P;(gen) / GeV

e Essence of unfolding: /(*..,)= [ /(K (X,p %)%, > FXineo) = K f(Xreco)

e Easy in concept, but difficult in practice
-> response inversion is numerically unstable

e Solutions to stabilize exist (‘regularization’) but invariably trade
improved stability (‘reduced variance’) for bias (‘systematic effects’)

e Traditional solutions largely restricted to 1D histograms for this reason,
but many new developments in recent years, driven by ML/AI

e Unfolding is a large and complex topic = See dedicated lecture by Lydia
Wouter Verkerke, NIKHER



The experiment as convolution — one step back...

Simulation of ‘soft physics’ Simulation of ATLAS
physics progess;,:
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The experiment as convolution — one step back...
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The detector as convolution

e Then convolution can be written in terms of parton kinematics

f (xreco ) = f f (xtheo )K(xreco ? xtheo )dxtheo

¥

f,(F)= & [, [ Gy-w.5): e

phase-space factor

Simulation of ‘soft physics’

Simulation of ATLAS
physics proggss:.: '

Simulation of high-energy
physics process
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The detector as convolution — matrix element methods

—_ -

e The transfer function W(x,y) maps L1
) . ) . L=
parton kinematics onto reco kinematics

ME parton Parton-level jet Reconstructed jet

?‘&m =

e The transfer function factorizes by parton. Usually it is further
approximated to also kinematically factorize in terms for E,d,y

W()_(,: )_}) _ W()—C»’j/») W (Ereco Epart) W ((precoa(ppart reco’yipart)

1 1 1

P artons p artons '\\ /

typically Gaussian models
Wouter Verkerke, NIKHER




The detector as convolution — matrix element methods

e The transfer function W(x,y) maps 1. (7= & ﬂMaz(})-W(f,J?)-dqo(})

parton kinematics onto reco kinematics

The hard part of W(x,y) is dealing with gluon splittings
(makes mapping of partons to truth jets fuzzy)

Factorization of emissions in soft/collinear limit

and Sudakov factors allow semiclassical approximation of quantum
process:

vertices = Splitting functions

|

propagator-lines = Sudakov factors
hard scale

hadronization
M scale
%o % ’
w%%\ g part

le'

)

-—} Can calculate weight for shower history iteratively
-"b Can use smaller objects and more objects (more information)

Wouter Verkerke, NIKHEF



What can you do MEM models”?

e The output of the Matrix Element Method is a probability model
for events of a fixed reco-level topology (e.g. 2 jets, 1 lepton, MET)
under a physics process hypothesis (e.g. pp=2H2>WW->qqglv)

e \With MEM models for multiple hypothesis, can do hypothesis testing
(event selection) in an Neyman-Pearson optimal way

The Neyman-Pearson lemma

* |n 1932-1938 Neyman and Pearson developed a
theory in which one must consider competing hypotheses

— Null hypothesis (Hy) = Background only
— Alternate hypotheses (H,) = e.g. Signal + Background

and proved that

e The region W that minimizes the rate of the type-Il error (not
reporting true discovery) is a contour of the Likelihood Ratio

P(x|Hy)

S > Fa

e Any other region of the same size will have less power

e Cut-off value ¢ controls type-I error rate (‘size’ = bkg rate)

e So why don’t we always do this? (instead of training neural

The Neyman-Pearson lemma

e Example of application of NP-lemma with two observables

fx.ylHy)
foxyH) fxylHy) Tyl

e

Neyman-Pearson: LR cut gives best possible ‘power’ = signal eff.

networks, boosted decision treé%

The problem is that we usually don’t have explicit formulae for the

| But with MEM we do! |

pdfs f(Z|s), f(Z|b) .

VVUUTCT VETRETRT, TN T




Separate signal from background, or spin-0 from spin-2

e Ratio of MEM probability models is Neyman-Pearson optimal
discriminant between two hypothesis

— Can be signal vs background

— Can also be two different types of signal

e Example MEM applications in HEP: ATLAS H->ZZ decays:

— Comparison between pairs in Higgs spin/parity states O*, 0, 2*

80-3_*"'\""|'Hw~”H"|"'
£ - ATLAS Prellmlnary —Data
L 0'25_ H— ZZ — 4] Signal hypothesis |
- \s=7TeV:[Ldt=461b" (m=125GeV) -
0.2 1s-= : [Ldt = 20.7 fb™* +
i \sPSTeV [Ldt = 20.7 tb _JE =0"
r J -MELA P° )
0.151- "JH1=O T
0.1
0.05]-
:.1-1"' ’|-‘I.| I
95 90

log(L(H

JIL(H))

Entries

0.6
- ATLAS Prellmlnary —Data
0.5— H %ZZ %4| Signal hypothesis |
- \s=7TeV:[Ldt=461b" (m=125GeV) -
0.4~ \s=8TeV:[Ldt=20.7 " _JP -0
- JP - MELA '; ]
0.3F = 2m
0.2 7
0.1~ ; 7
0:4 | n w‘r;l L]
15 -10 -5 0 5 10 15

log(L(H,J/L(H)
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What can you do MEM models”?

e (Given the computational complexity of MEM models, application
largely restricted to discriminating between two simple hypothesis

* For example Higgs Spin-2 vs Higgs Spin-0,

or CP states of Higgs

e \What about testing theories with parameters”?

L
0o 5 10 15

e Option 1 — brute-force modeling in MEM process i

log(L(H )/L(H))

FEE) = [IMPGID) - W) - doG)

very significant increase in numerical computations, e e
validation difficult (does it work well for all a?)

e (Option 2 — factorize parametric dependence (if possible)
R PP 2,1 L . ,
F@) = ~m(@,do) [IMPGlao) - W (E,5) - dg )

for example when only magnitude of M depends on a, and not the
differential distribution iny Wouter Verkerke, NIKHEF



What can you do MEM models”?

e (ption 2 — factorize parametric dependence (if possible)

1
FEE) =@, drep) [ IMPGlare) - WD) - dp()

- Can also model certain parameters that effect distributions in 'y,
in case M consists of multiple amplitudes and parameters
only affect rates of amplitudes

M = aoMO + alMl

P
IM|? = afIMol?® + agas|[MoM; | + af M, |?
L , 5 L R Original MEM formulation
f(Xla) = ag j|M0| )W, y) - de(y) for simple hypothesis

ragay j MMy | () - W (Z, ) - do ()

+a2jM ) WX Y) - dey
1 | 1I (y ) ( y ) <p(y ) Wouter Verkerke, NIKHEF



Amplitude extraction — exploiting quantum mechanics

e Theory parameters entangled with the detector response are difficult
as some form deconvolution is needed, e.g. particle masses,
particle lifetimes etc...

e But also plenty of theory parameters are effectively scaling
amplitudes = factorization is widely possible!

e Simplest (trivial) case: signal + background model - factorization

e (General case: signal(s) + background(s) + interference term(s)

T T T LA R |
4-lepton production, CMS cuts, Vs=13 TeV
qq - 4leptons

Background-only model

do/dmy[fb/GeV]

Count

Signal model

500
[GeV]

200 1000 2000
my[Ge
8 Kk oxky 2 H z
P A I R =
g VA 8 z



Amplitude modeling — the basics

When it’s possible to formulate p.d.f.s for observable distributions
analytically, constructing probability models that sum physics
amplitudes with interference effects is straightforward
Sum of p.d.f.s Sum of amplitudes grzr?lffcq%“;:
Components are pdfs /
Ec. “H (x)
s b . - ! Explicit
f(x|s,b)= fs(x) + —bfb(x) f(x]|c)= l < normalization
\'Fb s+ EC,- 'fH,-(x)dx required
Both models E'-
are p.d.f.s 400~
o
Each component is positive definite Components can be negative,

sum must be positive definite



Amplitude modeling — amplitudes from MC generators

e |n many LHC analyses, observable distributions can only be
obtained from MC simulation chain. /f so, this is also true for
amplitudes

e How can we simulate observable distributions corresponding to
individual amplitudes?

— Requires some support in MC generators - ability to selectively
enable/disable individual amplitudes

— Amplitudes can be negative - How does this translate to an MC event
sample? Potential difficulty (e.g. allow for negative event weights)

e But otherwise straightforward — no complex deconvolution or
template morphing needed to deform template histograms

— Every physics model with (only) amplitude parameters can always be
described as a weighted sum of amplitude templates (histograms!)

Ecl. “H (x)

f(x|5)=chi'in(X)dx

l Wouter Verkerke, NIKHEF




Generating a probability model from a Lagrangian

e (iven a Lagrangian describing a Field Theory = can now model
any transition amplitude (pp = X =2 Y) as a sum of real-valued
amplitudes

e (Consider example with two operators labeled SM and BSM,
with strengths ggy and gggy respectively. Matrix Element is

M(gsu, gasm) = gsmOsu + gasuOss
e Transition amplitude is |M|?:

T(gSMagBSM) o< |M(gSM>gBSM)|2

IM(gsm, Gssm) |2 — QSM |Osm |2 + QSSM |Ogsm |2 + 29sm9esmR (O Osswm)

Noe=———

ch @) Mapping of Wilson coefficients to

¢ f H (x)dx template scale factors Wouter Verkerke, NKHER

f(XI5)=E

i



The mapping of templates to operators

¢ Note that templates do not need to correspond one-to-one to
single operators or pure interference terms

IM(gsm, Gesm)|° = 95| Osu|® + GBsm|Ossm |* + 2gsmgesmuR (OgyOssm)

e [or 2 operator, any three independent pairs of gsy,dgsy Values can
generate templates that will span the whole parameter space. E.qg.

Tin(1,0) o< |Osu®
Tin(0,1) o |Ogsu|®
Tin(1,1) o< |Osm|? + |Ossm|? + 2R (0%, O8su)

2
IM(QSM ) QBSM)| = (stz — gsmgssm) Tin(1,0) + (Qasvz — gsmgssm) Tin(0,1) + gsmgesm Tin(1,1)
A - =4 N - - N — 1

Wouter Verkerke, NIKHEF
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sum there is

or any amplitude
| positive

> This result is general: f
of templates that are &

always a configuration

Tin(1,0) o< [Osu?
Tin(0,1) o |Ogsum|*
Tin(1,1) o |Osm|? + |Ossm|? + 2R (0%, Ossu)
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Tin(1,0) o |Osu|?
Tin(0,1) o |Ogsm|?

Rearranged amplitude sums

SM
Tin(1,1) o< |Osm 12+ |Ossm|? + 2R (0% Ossw)
2
Ksm
-1
Interference Mix
\ / ) KSM * KBSM ; \ /\
\//\\/ i \U
BSM -1
SM

Tout(gsm, Gesm) = (QSM2 — gsmTsswm) Tin(1,0) + (QBSM2 — gsmGssm) Tin(0,1) + gsmGssm Tin(1,1)
- S, N z Nt

" —~
VVOULE! VEIKeIke, INIER



Rearranged amplitude sums

Tin(1,0) o< |OSM|2

M Tin(0,1) e |OBSM‘2
/7‘,-,,(1|, 1) o< |Osul? + |Ossu[® +2R(04yOssm)
-1
Mix

i Interference

BSM

B3| —==[  |a1,A2,a3

2
BSM

Tout(gsw, Gesw) = (gsu® — Jsugasw) Tin(1,0) + (gasw — gsugasw) Tin(0, 1) + gsugasy Tin(1, 1)
—_— —_— ——
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The mapping of templates to operators

e (Generalizing further, we will now work with 3 templates T,,T,, T that
are sampled at arbitrary points in the (s, dssm) Parameter space

: Tin(1,0) Tin(8sM, 1> 8BSM, 1)
R I Tin(0, 1) Tin(gsM.2 8BSM.2)
Tin(1, 1) Tin(gsm.3, §BSM.3)-

\

e The output probability model then takes the general form

Tout(gsms gBsm) = (g5yr — gsmgBsM) Tin(1,0) + (gpsn — &smgBsM) Tin(0, 1) + gsmgnsm Tin(1, 1).
~————

=w] =Wy =w3

Tout(gsms g8sM) = (a1183y + @1285snm + @138sMEBSM) Tin(gsM. 1, §BSM. 1)

wi

2 2
+ (a2185y + @228p5M T+ 4238sMEBSM) Tin(gsM,2, €BsM,2)

w2

2 2
+ (a3185m + @3285m + @338sMEBSM) Tin(gsMm,3, €BSM, 3)-

fter Verkerke, NIKHEF
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The mapping of templates to operators

ion of the appropriate coefficients aj

This then only leaves the calculat
W, W3 for templates T+ To,T3

that occur in the weights functions Wi,
quation

Their solution is found by solving the matrix €

2 2
8sm.2 8sM,3
9 y)
8BSM,2 8BSM,3
gSM.28BSM,2  §SM,38BSM.3

2
aj; aprz a3 8sM. 1

2
ary ax» as|\- 8BSM. 1
azy a3 as3 gsM, 18BSM, 1

Tout(8SM, = :
out(gsM, gBsm) = (a1185y + a128psn + @138sME&BsM) Tin(gSM. 1, EBSM, 1)

wi

+ (a21g2 + a 2
sm + a228gsm T @238sMEBsM) Tin(gsMm,2, €BsM,2)

w2

+ (a31g2 + azpg>
sm T @328gsm T @338sM&BSM) Tin(gsm,3, £BSM,3)-

ter Verkerke, NIKHER
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A more realistic physics example

¢ |n many scenarios new physics can enter amplitudes in both the
production and decay vertex of a t-channel process

v N y
Osm H Jswm
OBsm ’ """""" ‘ OBsm

e (Corresponding matrix eldment of this process

1
I 1 I 1

M (gsm, 8Bsm) = (gSM - Osm,p + gBsM OBSM,p) - (gsm - Osm,q + 8BsMm - OBsm,a) -

Wouter Verkerke, NIKHEF



A more realistic physics example

e A little math shows we now need 5 independent templates

M(gsm. gssm) = (8sm* Oswip + 88sm - Opsmp) + (8sm - Osma + 88sm - OBswa) -

IM(gsw, gosm)I* = (gsmOsm,p + ngMOBSM,p)2 - (gsMOsma + gBsMOBsm.a)” & 1
= g3m OéMpoéM.d +8hsm ° 0}235M,p012!SM,d &2
+ gap8BSM (O§MPR(0§MdOBSM,d) + ‘R(O§M,,,OBSM,p)0§Md) & 3
+ 83nBhsm (O§Mp0§SM.d 63 0}235M, pogM,d) <4

+ gsm8asm - (Ohsm p R (04 4O8sm.a) + R(Oly ,08sMp) O a) - € 5

e And the template model can be written as

4 3 2 2 3 4
Tout(gsms gBsm) = (allgSM + d12858BsM + A1385m8asm T @148SMERsm T+ angBSM) Tin(gsm, 1> BsM, 1)

wi

4 3 2 2 3 4
= (021gsM + a285\8BsM + a2385v8psm + A248SM&rsm T dzsgBSM) Tin(gsm,2- BsM,2)

wy

4 3 2 2 3 4
= (aslgSM + a3285,18BSM + a3385M8psm + @348SM8gsm T assgBSM) Tin(gsm,3, £BSM,3)

w3

4 3 2 2 3 4
= (6141g5M + a428518BSM t d4385\8psm T @448SM8rsm T a4sgBSM) Tin(gsm,4, 8BSM,4)

wy

4 3 2 2 3 4
= (aSIgSM + as5285v8BSM t A5385v8psm T @548sMEpsm T aSSgBSM) Tin(gsm,5, BSM,5)-

ws

4 4 4 4 4
ayy app a;z ais as ; 8sm,1 ; 8sm,2 ; 8sm,3 ; 8sm,4 \ 8sm,5
ary ax» a3 ay as 8sM,18BSM, 1 8g) 28BSM,2 - 8\ 38BSM,3 g\ 48BSM,4 85\ 58BSM,5
2 2 27 2 277 2 2 2 27 2 _
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A concrete example VBH 2> H 2> WW
3 shared parameters = 15 terms in [M|2 expression = 15 input distributions needed
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A concrete example VBH 2> H 2> WW

3 shared parameters = 15 terms in [M|2 expression = 15 input distributions needed
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Summary on amplitude models

e Amplitude sum models work (in terms of mathematics)
exactly the same as template interpolation models.

But have difference choice of coefficient (polynomials instead of linear terms)

Appropriate choice results in interpolation mechanism that is physically meaningful
- Nno approximation in interpolation (beyond assumption of LO physics)

Freedom of choice in sampling points ensures that all sampled distributions
are positive definite (no interference-only terms)

Computationally fast & efficient process

e But need to watch configuration of sampled points

—> if interpolated states (e.g. measured minimum)

is far from important samples then large scale factors =~ Lo fismiesc® 0 vebdionsemple

might be applied 5

- If so, blow-up of MC statistical fluctuations occurs... .




Choosing optimal observables in amplitude models

¢ All templates in morphing models describe the same observable (here a¢;;)

350~ MadGraph5_aMC@NLO  ATLAS Simulation internal
[ Input samples:
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o |WVhat observable has the most statistical power? In this example, a
strategically chosen detector-level observable was used (a¢;;)

e (General answer: use the Neyman-Pearson Lemma to construct
an optimal observable (as was done for the earlier Higgs Spin MEM example)

The Neyman-Pearson lemma

* |n 1932-1938 Neyman and Pearson developed a
theory in which one must consider competing hypotheses

- Null hypothesis (Ho) = Background only
~ Altemate hypotheses (H;) = e.g. Signal + Background

and proved that

* The region W that minimizes the rate of the type-Il error (not
reporting true discovery) is a contour of the Likelihood Ratio

P(x|Hy) >k
P(z|Ho) =

* Any other region of the same size will have less power
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Amplitude models & optimal observables - NBSI

e Q: What is the optimal observable in amplitude model with many terms 7, ;

350~ MadGraph5_aMC@NLO  ATLAS Simulation internal
[ Input samples:
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E.g. a¢;; might be optimal to distinguish |Ogy|? from |Oggu|?
but it is automatically optimal to distinguish between |Ogy|? and |OsyOgsm |?

e A: Fori>2, there is generally not a single optimal observable
to descriminate between all operator terms T;,, ;

e [Effect: Sensitivity to constrain parameters k reduced for values of k0.

Close to SM, k =0, where T, s, will dominate all other terms it can still be close to optimal

Notably weak measurements (with interval boundaries on k far from 0), are further weakened

Wouter Verkerke, NIKHEF



Optimal sensitivity for amplitude models - NSBI

You can regain optimal sensitivity with a (small) paradigm change:
instead of aiming to model the likelihood, model the likelihood ratio

Example case: H->ZZ->1*II*I- production in the offshell mass range,
which has significant S-B interference contributions

— 14 observables that describe
Higgs production and decay kinematics

Likelihood in any observable x for signal strength p

1
p(x|p) = ) [(u — Vi) 05 Ps(x) + /i osp1 Psp1(x) + (1 — /i) 0 Pg(x) + 0442z Pyqzz(x) + (ttV & EW terms)]
[ | [ | ) [ | J [ |

| | | || J
signal mix background non-interf. background

q
g 7 g - 7 —_—— AN z P t w
9g gv
‘j‘;%@ . < vy | Y p
p H P g > 7 7—4——-WW 7 g -

Wouter Verkerke, NIKHEF




Optimal sensitivity for amplitude models = Likelihood ratios

— Likelihood in any observable x for signal strength u

1

p(x|p) = ) [(u — Vi) 05 Ps(x) + i 0sp1 Pspi(x) + (1 — Vi) 0g Pp(x) + 04q27 Paqzz(x) + (ttV & EW terms)]

\ J o\ )\ J o\ ]
Y Y Y

|
signal mix background non-interf. background

q z
g 0 " 7 g \Q_QQJ -t Z —— p t w
Egﬁ&”: 1 1 ! ‘
H* - —
g 7 g w > 7 B AN 7 g ~

— Likelihood ratio formulation of the same problem

-

plxlu) 1

Pg(x) Pgp;(x) Pg(x) Pgqzz(x)
O] GG

ooy T VRIS T ATV oR ey T aezz |y

T

Now free to model each ratio with a separate optimal observable

| —

Wouter Verkerke, NIKHEF



Estimation Likelihood / Density ratios = ML/AI methods

e (Constructing the optimal observables:

— Use modern ML technigues to ‘learn’ the best way to model

the density ratios in the 14-dimensional observable space

— Train separate ML networks for each relevant pair of amplitudes

Training

4¢ decay
kinematics

4+ production
kinematics

Njers and dijet
kinematics

Application

Data

— Ratio of likelihood ratios recovers usual likelihood ratio test statistic

p(x|w)
p'(x)
Density ratio
estimate
Nevents
= Y 210 2P )
p(x|w) L /')
p,(x) Nevents

_ p(xilp)
= 28

— Bonus: no more histograms = unbinned likelihood

ty(X|p) =

uuuuuuu

L(X|u)
L(X|u)




Effect of optimal observables — Higgs offshell example

e Comparison: template morphing histogram analysis vs
neural inference model with optimal observables
on the same data

4¢ only

--—- Exp Histogram
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68% confidence interval — template histogram morphing



Effect of optimal observables — Higgs offshell example

e Comparison: template morphing histogram analysis vs
neural inference model with optimal olbservables
on the same data
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Implementation challenges of Neural SBI method

e Skipped over a very large amount of important details

— Calibration of NN is crucial - output is directly used in calculation of
confidence intervals = no correction mechanism to account for
data/simulation mismatches in formalism

— Choice of denominator likelihood is crucial — it must be positive-definite
in the entire analyzed region (otherwise ratio is ill-defined)

— Systematic uncertainties - implemented with a morphing-like approach
using nuisance parameters and profiling over these

— Computation times huge - training took 4000 hours on a NVidia A100 GPU

e But bottom line is clear — optimal observable models based on
NSBI estimates on MEM-like density ratio have great potential

— Excellent use case for Effective Field Theory measurements, now very
ubiquitous at the LHC

— At present only a single LHC analysis has implement the method in full

Wouter Verkerke, NIKHEF



Roadmap of this course

e Start with basics, gradually build up to complexity

Model building

Counting models

Statistical methods

Modeling distributions

Statistical tests with counting experiments

Signal parameterization strategies

Test statistics for models describing distributions

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Parameter estimation, confidence intervals & limits

Diagnosing inference on complex models

Inference with nuisance parameters

Advanced signal modeling techniques

The

mgle




