Model building 5

Diagnostics (understanding MINUIT, fit stability and convergence) and Validation (understanding your fit, overconstraining parameters, 2-point systematics etc)

Roadmap of this course

• Start with basics, gradually build up to complexity

Minimizers and convergence of profile likelihood fits

- Likelihoods with systematics modeling ('profile likelihood fits') tend to be more complex than 'normal' fits
- Sometimes these likelihood can have pathological features that frustrate the minimization process
- To help you understand I will briefly cover
 - How MINUIT works and defines 'convergence'
 - Typical problems that occur in profile likelihood models and how these affect MINUIT

MINUIT in a nutshell

- MINUIT is a function minimization and analysis packages written by Fred James
 - Original FORTRAN version more than 40 years old!
 - Currently two versions in C++ in ROOT: TMinuit and Minuit2. Former is a 'machine translated version' from FORTRAN, latter hand-ported version under the supervision of Fred James
 - I recommend to always use Minuit2 performance has been exhaustively validated against the original minuit and you get much more useful diagnostic information out of it.
- Three analysis routines implement main functionality
 - MIGRAD: Function minimization using the variable metric method developed by Fletcher Davidon and Powell. (This is efffectively equivalent to the 'industry standard' method of Broyden, Fletcher, Goldfarb and Shanno 'BFGS')
 - HESSE: Error analysis: Calculates Hessian matrix of 2nd derivatives and inverts this into the covariance matrix
 - MINOS: Calculates intervals based on the profile likelihood ratio

Function minimization using the variable metric method

• Minimizers *not* implement a simple 'steepest descent' method as plain gradient often does not point well in direction of minimum

Wouter Verkerke, NIKHEF

Function minimization using the variable metric method

 Instead concept of 'conjugate gradients' that exploit knowledge of covariance information

Function minimization using the variable metric method

- Convergence criteria is based on 'estimated distance to minimum'
 - EDM 'estimated vertical distance to minimum' assuming parabolic function

$$2 \cdot \text{EDM} = \rho = g^T V g$$

- NB: Derives from general distance metric in non-Euclidian space

$$\Delta s^2 = \Delta x^T A \Delta x$$
 Covariant metric tensor

- Note that both minimization and convergence criteria depend on knowledge of covariance matrix
- There are 2 ways to calculate V
 - 1. From the Davidon-Fletcher-Power formula
 - 2. From the inversion of the Hessian matrix

 $\mathbf{V}_1 = \mathbf{V}_0 + \frac{\delta \delta^{\mathrm{T}}}{\delta^{\mathrm{T}} \gamma} - \frac{\mathbf{V}_0 \gamma \gamma^{\mathrm{T}} \mathbf{V}_0}{\gamma^{\mathrm{T}} \mathbf{V}_0 \gamma},$

 $\mathbf{V} = \mathbf{G}^{-1}$

Calculation of Hessian is expensive (1/2N² likelihood evaluations)

Wouter Verkerke, NIKHEF

Minimization convergence

 After every VariableMetric step calculate EDM = ½g^TVg

VariableMetric:	start iterati	ng	until	Edı	m is <	0.001						
VariableMetric:	Initial state	:	- FCN	=	-289.	1204081677	Edm	=	46.0713	NCalls	=	1826
VariableMetric:	Iteration #	1	- FCN	=	-299.	3073097602	Edm	=	9.18415	NCalls	=	2226
VariableMetric:	Iteration #	2	- FCN	=	-304.	9468725143	Edm	=	2.22698	NCalls	=	2624
VariableMetric:	Iteration #	3	- FCN	=	-306.	3323972775	Edm	=	1.43793	NCalls	=	3016
VariableMetric:	Iteration #	4	- FCN	=	-307	.199970017	Edm	=	0.615574	NCalls	=	3410
VariableMetric:	Iteration #	5	- FCN	=	-307.	6493784582	Edm	=	0.352904	NCalls	=	3804
VariableMetric:	Iteration #	6	- FCN	=	-307.	8960954798	Edm	=	0.0749124	NCalls	=	4196
VariableMetric:	Iteration #	7	- FCN	=	-307.	9549184882	Edm	=	0.0498047	NCalls	=	4588
VariableMetric:	Iteration #	8	- FCN	=	-308.	0068371877	Edm	=	0.03473	NCalls	=	4980
VariableMetric:	Iteration #	9	- FCN	=	-308.	0564661263	Edm	=	0.0266955	NCalls	=	5372
VariableMetric:	Iteration #	10	- FCN	=	-308.	1092267909	Edm	=	0.038622	NCalls	=	5764
VariableMetric:	Iteration #	11	- FCN	=	-308.	1547659161	Edm	=	0.0290921	NCalls	=	6156
VariableMetric:	Iteration #	12	- FCN	=	-308.	1870210082	Edm	=	0.00827767	NCalls	=	6548
VariableMetric:	Iteration #	13	- FCN	=	-308.	2008924182	Edm	=	0.0034224	NCalls	=	6940
VariableMetric:	Iteration #	14	- FCN	=	-308.	2064790118	Edm	=	0.00151676	NCalls	=	7332
VariableMetric:	Iteration #	15	- FCN	=	-308.	2090105175	Edm	=	0.00106118	NCalls	=	7724
VariableMetric:	Iteration #	16	- FCN	=	-308.	2106535849	Edm	=	0.000634155	NCalls	=	8116

Terminate VM procedure when EDM<0.001

Minimization convergence

VariableMetric:	Iteration #	16 -	FCN =	-308.2106535849	Edm	= 0	.000634155	NCalls	= 8116
VariableMetric:	Iteration #	15 -	FCN =	-308.2090105175	Edm	=	0.00106118	NCalls	= 7724
VariableMetric:	Iteration #	14 -	FCN =	-308.2064790118	Edm	=	0.00151676	NCalls	= 7332
VariableMetric:	Iteration #	13 -	FCN =	-308.2008924182	Edm	=	0.0034224	NCalls	= 6940
VariableMetric:	Iteration #	12 -	FCN =	-308.1870210082	Edm	=	0.00827767	NCalls	= 6548

- (Terminate VM procedure when EDM<0.001)
 - Note that EDM up to here was calculated with V from DFP updater formula

$$\mathbf{V}_1 = \mathbf{V}_0 + rac{\delta \delta^{\mathrm{T}}}{\delta^{\mathrm{T}} \gamma} - rac{\mathbf{V}_0 \gamma \gamma^{\mathrm{T}} \mathbf{V}_0}{\gamma^{\mathrm{T}} \mathbf{V}_0 \gamma},$$

- From here on, procedure depends on 'strategy code'
 - Code 0: terminate line search
 - Code 2: Recalculate V from G⁻¹ (HESSE) if EDM(HESSE)>0.001 restart line search, else terminate
 - Code 1: If accuracy of V_n from DFP better than 5% terminate, else follow Code 2 procedure
- Strategy 1 is the default.

Validation of convergence

- For smooth functions covariance estimates from HESSE are generally more accurate than those from Davidon-Fletcher-Powell but matrix inversion step is vulnerable to singularity issues
- Singularities detected with eigenvalue analysis of Hessian matrix G before matrix inversion
 - If 'smallest eigenvalue'/'largest eigenvalue' < 10⁻⁶ then matrix is declared 'not positive definite'
 - Note that happens for both negative *and* small eigenvalues
 - In that case an 'ad-hoc' term is added to the diagonal of the Hessian matrix to force it positive definite so that it can be inverted
- The 'adjusted' V from HESSE is then used to calculate the EDM
 - EDM estimate less reliable in this case, may cause MINUIT to endlessly go back to VariableMetric line search and eventually give up 'maximum number of calls exceeded'

Likelihood models that cause minimization problems

- Example 1 Strong correlations
 - Consider this simple likelihood model with one NP

$L_1(\mu, \alpha) = Poisson(N \mid \mu S(1 + \tau \alpha))Gaussian(0 \mid \alpha, 1)$

What does the likelihood look like, e.g. for N=1000?

Increasing the observed event count

Increasing the observed event count

0.5 Vertical 0.4: scale maximized 0.4 at 0.5 units 0.3 0.3

0.2:

0.2

0.1:

0.1

0.0:

1

1.2

1.1

1.15

Likelihood models that cause minimization problems

- Example 2 Hidden strong correlations
 - Consider this trivial extension of the previous example with 2 NPs

 $L_2(\mu, \alpha_1, \alpha_2) = Poisson(N \mid \mu S(1 + \tau_1 \alpha_1 + \tau_2 \alpha_2))Gauss(0 \mid \alpha_1, 1)Gauss(0 \mid \alpha_2, 1)$

- Underlying scenario: two (independent) sources of systematic uncertainty that have a similar effect on the physics measurement
- What does (profile) likelihood look like for various S?

Wouter Verkerke, NIKHEF

$$-\log L(\mu, \alpha_1, \alpha_2) - 1000$$
 events

Slice in -logL $-\log L(a,b,\hat{c})$

0.5 0.4 0.4 0.3 0.2 0.3 0.1 -0.1 -0.2 -0.3 -0.4 -0.5.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

nll_Profile[mu,alpha1] : mu vs alpha1

Profile likelihood $-\log L(a,b,\hat{\hat{c}}(a,b))$

nll_Profile[alpha1,alpha2] : alpha1 vs alpha2

Error ellipse from **HESSE**

$$-\log L(\mu, \alpha_1, \alpha_2) - 10.000$$
 events

Slice in -logL $-\log L(a,b,\hat{c})$

 $-\log L(a,b,\hat{\hat{c}}(a,b))$

Profile likelihood

Note that PLL contours don't change between 1K and 10k!

Error ellipse from HESSE

Slice in -logL $-\log L(a,b,\hat{c})$

1.05

1.1 1.15 1.2

-0.5 -0.4 -0.3 -0.2 -0.1 0

0.2

0.2

0.1

0.0

0.1 0.2 0.3 0.4 0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

0.4

0.3

0.3

0.2

0.2

A RooPlot

 $-\log L(a,b,\hat{\hat{c}}(a,b))$ Note that PLL contours don't change between 10K and 100k close to min.!

Profile likelihood

(but onset of fit failures further away...)

> Error ellipse from **HESSE**

Slice in -logL $-\log L(a,b,\hat{c})$

Profile likelihood $-\log L(a,b,\hat{\hat{c}}(a,b))$

Note that PLL contours don't change between 100K and 1M close to min.! (but further increase of fit failures further away...)

Error ellipse from HESSE

Conclusions on strong correlations

- MINUIT can handle strong correlations very well, but at some point algorithm breaks down
 - Notably HESSE will fail when ratio of weakest-to-strongest eigenvalue < 10⁻⁶
- Diagnostic of the existence of strong correlations can be difficult
 - In simple models (Ex 1) this is reflected correlation coefficients
 - In more complex models (Ex 2) this may not show at all in the correlation coefficients because strong 'N-point correlations' may still project out to modest 2-point correlations (i.e. the usual Pearson correlation coefficients)
 - Better diagnostic tools is eigenvalues of Hessian matrix before inversion, but not (yet) available in Minuit2 [I am discussing this with ROOT team]
- Solution: consider to simplify model:
 - If two NPs represent conceptually distinct systematic uncertainties, but their effect on the likelihood is virtually identical, then there is effectively a redundant degree of freedom. You can eliminate one

- Template morphing algorithms can introduce various other pathologies in the likelihood that cause minimizers to fail
 - We've already seen some of them
- Kinks & Multiple minima
 - Caused by (among others) template morphing with piece-wise linear interpolation and morphing of (low-statistics) template distributions where MC statistical effects are larger than systematic effect

Limitations of piece-wise linear interpolation

- Bin-by-bin interpolation looks spectacularly easy and simple, but be aware of its limitations
 - Same example, but with larger 'mean shift' between templates

Note double peak structure around $|\alpha|=0.5$

Wouter Verkerke, NIKHEF

Non-linear interpolation options

• Piece-wise linear interpolation leads to kink in response functions that may result in pathological likelihood functions

- A variety of other interpolation options exist that improve this
 - Parabolic interpolation/linear extrapolation (but causes shift of minimum)
 - Polynomial interpolation [orders 1,2,4,6]/linear extrapolation (order 1 term allows for asymmetric modeling of templates)

Non-linear interpolation options

• Comparison of common interpolation options

Wouter Verkerke, NIKHEF

- Effects of likelihood pathologies
 - Numerical noise and 'jumping' of profile likelihoods
 - Example NP (profile) likelihood scan of an ATLAS Higgs trial model

- Another effect of likelihood pathologies is that calculation of derivatives and notably the Hessian from either FDP or HESSE matrix become inaccurate
 - Slows down minimization
 - Can blow up EDM calculation \rightarrow no convergence
- Red flags: EDM estimates that don't decrease ~monotonically
 - Only possible in Minuit2 (Minuit1 does not report EDM per step)

VariableMetric:	Iteration # 8	- FCN	=	-308.000	68371877	Edm	=	3.40473	NCalls	= 4	1980
VariableMetric:	Iteration # 7	- FCN	=	-307.954	49184882	Edm	=	0.298047	NCalls	= 4	1588
VariableMetric:	Iteration # 6	- FCN	=	-307.896	60954798	Edm	=	0.0749124	NCalls	= 4	1196
VariableMetric:	Iteration # 5	- FCN	=	-307.649	93784582	Edm	=	0.352904	NCalls	= 3	3804
VariableMetric:	Iteration # 4	- FCN	=	-307.19	99970017	Edm	=	0.615574	NCalls	= 3	3410
VariableMetric:	Iteration # 3	- FCN	=	-306.332	23972775	Edm	=	1.43793	NCalls	= 3	3016
VariableMetric:	Iteration # 2	- FCN	=	-304.946	68725143	Edm	=	2.22698	NCalls	= 2	2624
VariableMetric:	Iteration # 1	- FCN	=	-299.307	73097602	Edm	=	9.18415	NCalls	= 2	2226
VariableMetric:	Initial state	- FCN	=	-289.120	04081677	Edm	=	46.0713	NCalls	= 1	L826
VariableMetric:	start iterating	until	Edr	n is < 0.	.001						

• Solutions: <u>simplify model</u>: eliminate nuisance parameters that suffer from dominant MC statistical effects (causing multiple minima, kinks etc...)

V from Davidon-Fletcher-Powell

- Note that pathologies can affect calculation of V via iterative DFP updating and Hessian inversion differently
- A real-life example of complex likelihood fit where DFP estimate is strongly affected by likelihood pathologies

V from inversion of Hessian

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Many spurious large correlations

• But other likelihood pathologies can affect Hessian inversion more

Summary

- A variety of pathological features in likelihood models can interfere with minimization
 - Strong correlations
 - Kinks
 - Multiple minima
 - 'Forbidden regions' where likelihood is not defined
- Problems affect various steps of the minimization process
 - Understanding these effects requires basic understanding of the minimization algorithms and strategies
- Solutions usually involve simplifications of models

Being a good physicist – Understand your model!

• Full (profile) likelihood treats physics and subsidiary measurement on equal footing

 $L(N,0|s,\alpha) = Poisson(N|s+b(1+0.1\alpha)) \cdot Gauss(0|\alpha,1)$ Physics measurement Subsidiary measurement
Our mental picture: "measures s" "measures a"
"dependence on a

weakens inference on s"

• Is this picture (always) correct?

- The answer is no not always! Your physics measurement may in some circumstances constrain α *better* than your subsidiary measurement.
- Doesn't happen in Poisson counting example
 - Physics likelihood has no information to distinguish effect of s from effect of a

$$L(N,0|s,\alpha) = Poisson(N|s+b(1+0.1\alpha)) \cdot Gauss(0|\alpha,1)$$
Physics measurement Subsidiary measurement

• But if physics measurement is based on a distribution or comprises multiple distributions this is well possible

• A case study – measuring jet multiplicity (3j,4j,5j)

$$L(\vec{N} \mid \mu, \alpha_{JES}) = \prod_{i=3,4,5} Poisson(N_i \mid (\mu \cdot \tilde{s}_i \cdot + \tilde{b}_i) \cdot r_s(\alpha_{JES}))) \cdot Gauss(0 \mid \alpha_{JES}, 1)$$

• Signal mildly peaks in 4j bin, sits on top of a falling background

• Now measure (μ, α) from data – 80 events

- Is this fit OK?
 - Effect of JES uncertainty propagated in to µ via response modeling in likelihood. Increases total uncertainty by about a factor of 2
 - Estimated uncertainty on α is not precisely 1, as one would expect from unit Gaussian subsidiary measurement...

 The next year – 10x more data (800 events) repeat measurement with same model

- Is this fit OK?
 - Uncertainty of JES NP *much reduced* w.r.t. subsidiary meas. ($\alpha = 0 \pm 1$)
 - Because the physics likelihood can measure it better than the subsidiary measurement (the effect of μ, α are sufficiently distinct that both can be constrained at high precision)

- Is it OK if the physics measurement constrains NP associated with a systematic uncertainty better than the designated subsidiary measurement?
 - From the statisticians point of view: no problem, simply a product of two likelihood that are treated on equal footing 'simultaneous measurement'
 - From physicists point of view? Measurement is only valid is model is valid.
- Is the probability model of the physics measurement valid?

$$L(\vec{N} \mid \mu, \alpha_{JES}) = \prod_{i=3,4,5} Poisson(N_i \mid (\mu \cdot \tilde{s}_i \cdot + \tilde{b}_i) \cdot r_s(\alpha_{JES}))) \cdot Gauss(0 \mid \alpha_{JES}, 1)$$

- Reasons for concern
 - Incomplete modeling of systematic uncertainties,
 - Or more generally, model insufficiently detailed

- What did we overlook in the example model?
 - The background rate has no uncertainty!
- Insert modeling of background uncertainty

$$L(\vec{N} \mid \mu, \alpha_{JES}, \alpha_{bkg}) = \prod_{i=3,4,5} Poisson(N_i \mid (\mu \cdot \tilde{s}_i \cdot + \tilde{b}_i \cdot r_b(\alpha_{bkg})) \cdot r_s(\alpha_{JES}))) \cdot Gauss(0 \mid \alpha_{JES}, 1) \cdot Gauss(0 \mid \alpha_{bkg}, 1)$$

Background rate response function

Background rate subsidiary measurement

- With improved model accuracy estimated uncertainty on both α_{JES}, μ goes up again...
 - Inference weakened by new degree of freedom a_{bkg}
 - NB a_{JES} estimate still deviates a bit from normal distribution estimate...

- Lesson learned: if probability model of a physics measurement is insufficiently detailed (i.e. flexible) you can *underestimate* uncertainties
- Normalized subsidiary measurement provide an excellent diagnostic tool
 - Whenever estimates of a NP associated with unit Gaussian subsidiary measurement deviate from $\alpha = 0 \pm 1$ then physics measurement is constraining or biases this NP.
- Is 'over-constraining' of systematics NPs always bad?
 - No, sometimes there are good arguments why a physics measurement can measure a systematic uncertainty better than a dedicated calibration measurement (that is represented by the subsidiary measurement)
 - Example: in sample of reconstructed hadronic top quarks t→bW(qq), the pair of light jets should always have m(jj)=mW. For this special sample of jets it will possible to calibrate the JES better than with generic calibration measurement

Commonly heard arguments in discussion on over-constraining

- Overconstraining of a certain systematic is OK "because this is what the data tell us"
 - It is what the data tells you *under the hypothesis that your model is correct*. The problem is usually in the latter condition
- "The parameter α_{JES} should not be interpreted as Jet Energy Scale uncertainty provided by the jet calibration group"
 - A systematic uncertainty is always combination of response prescription and one or more nuisance parameters uncertainties.
 - If you implement the response prescription of the systematic, then the NP in your model really is the same as the prescriptions uncertainty
- "My estimate of $\alpha_{JES} = 0 \pm 0.4$ doesn't mean that the 'real' Jet Energy Scale systematic is reduced from 5% to 2%
 - It certainly means that in your analysis a 2% JES uncertainty is propagated to the POI instead of the "official" 5%.
 - One can argue that the 5% shouldn't apply because your sample is special and can be calibrated better by a clever model, but this is a physics argument that should be documented with evidence for that (e.g. argument JES in t→bW(qq) decays)

Dealing with over-constraining – introducing more NPs

- Some systematic uncertainties are not captured well by one nuisance parameter.
- Written prescription often not clear on *number* of nuisance parameters:
- Does "the JES uncertainty is 5% for all jets" mean one NP

Dealing with over-constraining – introducing more NPs

- Some systematic uncertainties are not captured well by one nuisance parameter.
- Written prescription often not clear on *number* of nuisance parameters:
- Or does "the JES uncertainty is 5% for all jets" mean 5 NPs?

Dealing with over-constraining – introducing more NPs

- Some systematic uncertainties are not captured well by one nuisance parameter.
- Written prescription often not clear on *number* of nuisance parameters:
- If you assume one NP chances are that your physics Likelihood will exploit this oversimplified JES model to overconstrain JES for high p_T jets!

 Modeling of systematic uncertainties originating from theory sources can pose some extra & thorny problems

- Difficulties are not in the modeling procedure, but in quantifying what precisely we know
- Difficulty 1 What is distribution of the subsidiary measurement?
- Easy example Top cross-section uncertainty

$$L_{full}(s,\sigma_{tt}) = Poisson(N_{SR} \mid s + \varepsilon_{tt} \cdot \sigma_{tt}) \cdot Gauss(\tilde{\sigma}_{tt} \mid \sigma_{tt}, 0.08)$$

"XS Uncertainty is 8%" \rightarrow Gaussian subsidiary with 8% uncertainty (because XS uncertainty is ultimately from a measurement)

Difficult example – Factorization scale uncertainty

$$L_{full}(s, \sigma_{tt}) = Poisson(N_{SR} \mid s + b(\alpha_{FS})) \cdot F(\tilde{\alpha}_{FS} \mid \alpha_{FS})$$

"Vary Factorization Scale by x0.5 and x" \rightarrow F(α) is probably not Gaussian So what distribution was meant?

• Difficult example – Factorization scale uncertainty

$$L_{full}(s,\sigma_{tt}) = Poisson(N_{SR} \mid s + b(\alpha_{FS})) \cdot F(\tilde{\alpha}_{FS} \mid \alpha_{FS})$$

"Vary Factorization Scale by x0.5 and x" \rightarrow F(α) is probably not Gaussian So what distribution was meant?

- Difficult arises from imprecision in original prescription.
 - NB: Issue is *physics* question, not a statistical procedure question. Answer will also need to be motivated with physics arguments
- Note that you *always* assume some distribution (even if you do error propagation) → Profiling approach requires you to write it out explicitly. This is *good*!

- Difficulty 2 What are the *parameters* of the systematic model?
- Easy example Factorization scale uncertainty

 $L_{full}(s,\sigma_{tt}) = Poisson(N_{SR} \mid s + b(\alpha_{FS})) \cdot F(\tilde{\alpha}_{FS} \mid \alpha_{FS})$

- One parameter: the factorization scale → Clearly described and connected to the underlying theory model
- You can ask yourself if there are additional uncertainties in the theory model (renormalization scale etc), this a valid, but distinct issue.
- Difficult example Hadronization/Fragmentation model
 - Source uncertainty: you run different showering MC generators (e.g. HERWIG and PYTHIA) and you observe you get different results from your physics analysis
 - How do you model this in the likelihood?

- Worst type of 'theory' uncertainty are prescriptions that result in an observable difference that cannot be ascribed to clearly identifiable effects. Examples of such systematic prescriptions
 - Evaluate measurement with Herwig and Pythia showering Monte Carlos and take the difference as systematic uncertainty
 - Evaluate measurement with CTEQ and MRST parton density functions and take the difference as systematic uncertainty.
- I call these '2-point systematics'.
 - You have the technical means to evaluate (typically) two known different configurations, but reasons for underlying difference are not clearly identified.

Specific issue with theory uncertainties

- It is difficult to define rigorous statistical procedures to deal with such 2-point uncertainties. So you need to decide
- If their estimated effect is small, you can pragmatically ignore these lack of proper knowledge and 'just do something reasonable' to model these effects in a likelihood
- If their estimated effect is large, your leading uncertainty is related to an effect that largely ununderstood effect. This is bad for physics reasons!
 - You should go back to the drawing board and design a new measurement that is less sensitive to these issues.
 - E.g. If your inclusive cross-section uncertainty is dominated by full

 j fiducial acceptance uncertainty due to Herwig/Pythia issue, shouldn't you rather be publishing the fiducial cross-section?

Specific issues with theory uncertainties

- Pragmatic solutions to likelihood modeling of '2-point systematics'
- Final solution will need to follow usual pattern

 $L(N | s, \alpha) = Poisson(N | s + b(\alpha)) \cdot SomePdf(0 | \alpha)$

 Defining an (empirical) response function *b(α)* is the easy part

Nuisance parameter agen

 A thorny question remains: What is the subsidiary measurement for a? This should reflect you current knowledge on a.

Specific issues with theory uncertainties

- Subsidiary measurement of a theoretical 2-point uncertainty effectively quantifies the 'knowledge' on these models
 - Extra difficult to make meaningful statement about this, since meaning of parameter is not well embedded in underlying theory model
 - But again, all procedures need to assume some distribution... Profiling requires you to spell it out
- Some options and their effects

Two-point systematics on non-counting measurements

- In a counting experiment you can argue that for every conceivable background rate there exists a value of the NP that corresponds to that rate
 - Even if 'SHERPA' was never used to construct the model, you can still represent its outcome
- This is not generally true for distributions. A shape interpolation between 'pythia' and 'herwig' does not necessarily describe shape of 'sherpa' (or of Nature!)
 - Fundamental modeling problem!
 - You may need more parameters...

Nuisance parameter agen

Dealing with 'two-point' uncertainties

- Key issue: How many d.o.f. does you systematic uncertainty have?
- Especially important in the discussion to what extent a two-point response function can be over-constrained.
 - A result $a_{2p} = 0.5 \pm 1$ has 'reasonable' odds to cover the 'true generator' assuming all generators are normally scattered in an imaginary 'generator space'

Modeled uncertainty (1 dimension) assuming 'nature is on line' Effectively captured uncertainty

under the <u>assumption</u> that effect of 'position in model space' in any dimension is similar on response function

Wouter Verkerke, NIKHEF

Dealing with 'two-point' uncertainties

- Key issue: How many d.o.f. does you systematic uncertainty have?
- Especially important in the discussion to what extent a two-point response function can be over-constrained.
 - Does a hypothetical overconstrained result $a_{2p} = 0.1 \pm 0.2$ 'reasonably' cover the generator model space?

Modeled uncertainty (1 dimension) assuming 'nature' is on line

Effectively captured uncertainty

under the <u>assumption</u> that effect of 'position in model space' in any dimension is similar on response function

Wouter Verkerke, NIKHEF

Summary

- The key challenge for experimental physicist is to construct the likelihood function describing his analysis/experiment
- 'Profiling' is a technique allows to effectively incorporate all model uncertainties that are traditionally thought of as 'systematic uncertainties'
 - By empirically parametrizing the response of the full simulation chain
- Profiling enable used of all fundamental statistical inference techniques (frequentist/Bayesian), which start with the likelihood
 - A 'profile likelihood' allows execution of fundamental statistical techniques without cutting corners
 - Confidence intervals with guaranteed coverage, Bayesian posteriors, etc

Summary

- Profile likelihood implements and diagnoses many analysis issues that are missed by naïve approaches to systematic uncertainties (e.g. error prop)
 - "Posterior correlation" Effect of correlations between systematics introduced by features of the physics measurement
 - "Overconstraining" Either input magnitude was too conservative, or response model for systematic uncertainty was too simple (you'd like to know in either case)
 - "Imprecisely specified systematics" Profiling requires physicist to explicit spell out precise model that is used

• But is important to run diagnostics on a profile likelihood model

- Default interpretation in case of overconstraining is 'input uncertainty too conservative', which may lead to underestimated uncertainties if simplistic response model was the real problem
- 'Profiling' is the best way we know to incorporate systematic uncertainties is probability models

Fit diagnostics – NP ranking/impact plots

Does the fit constrain (reduce) the systematic uncertainty from the data, based on the choice of NP model, w.r.t. the input specifications?

\rightarrow Diagnostics are crucial!

Fit diagnostics – NP ranking/impact plots

Visualization of model predictions in observable space useful diagnostic!

- Localize fluctuations in templates that constrain/pull fits
- Observe magnitude of model change
 with variation of NPs within uncertainty

`ex16.C'

NP bias or constraint can be due to

- 1) Statistical fluctuation in data or template (common)
- 2) Invalid (over)somplified NP model (common)
- 3) Genuine physics information (not common)

If impact large: always investigate and fix as needed If impact is small, may ignore, use your judgement

Instructive to look both at *expected* and *observed* NP rankings

- Expected has no data fluctuations (Asimov)
- Additional pulls/constraints in 'observed' NP rankings have origin in data