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Model building 5 
Diagnostics (understanding MINUIT, fit 

stability and convergence) and Validation 
(understanding your fit, overconstraining

parameters, 2-point systematics etc)



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods



Minimizers and convergence of profile likelihood fits

• Likelihoods with systematics modeling (‘profile likelihood fits’) tend 
to be more complex than ‘normal’ fits

• Sometimes these likelihood can have pathological features that 
frustrate the minimization process

• To help you understand I will briefly cover
– How MINUIT works and defines ‘convergence’

– Typical problems that occur in profile likelihood models and how these affect 
MINUIT
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MINUIT in a nutshell

• MINUIT is a function minimization and analysis packages written 
by Fred James

– Original FORTRAN version more than 40 years old!

– Currently two versions in C++ in ROOT: TMinuit and Minuit2. Former is a 
‘machine translated version’ from FORTRAN, latter hand-ported version under 
the supervision of Fred James

– I recommend to always use Minuit2 – performance has been exhaustively 
validated against the original minuit and you get much more useful diagnostic 
information out of it. 

• Three analysis routines implement main functionality
– MIGRAD: Function minimization using the variable metric method developed 

by Fletcher Davidon and Powell. (This is efffectively equivalent to the ‘industry 
standard’ method of Broyden, Fletcher, Goldfarb and Shanno ‘BFGS’)

– HESSE: Error analysis: Calculates Hessian matrix of 2nd derivatives and inverts 
this into the covariance matrix

– MINOS: Calculates intervals based on the profile likelihood ratio
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Function minimization using the variable metric method 

• Minimizers not implement a simple ‘steepest descent’ method
as plain gradient often does not point well in direction of minimum
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Function minimization using the variable metric method 

• Instead concept of ‘conjugate gradients’ that exploit knowledge of 
covariance information
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position: x0
gradient: g0
Covariance: V0 = G-1 = IG(f)=

position: x1=x0-V0g0
gradient: g1

Covariance: V1 = V0+f(V0,x0,x1,g0,g1)

Davidon-Fletcher-Power rank 2 formula

NB: If function is perfectly parabolic 
and initial V0 is correct, 
convergence in one step! 



Function minimization using the variable metric method 

• Convergence criteria is based on ‘estimated distance to minimum’
– EDM ‘estimated vertical distance to minimum’ assuming parabolic function

– NB: Derives from general distance metric in non-Euclidian space

• Note that both minimization and convergence criteria depend on 
knowledge of covariance matrix

• There are 2 ways to calculate V
1. From the Davidon-Fletcher-Power formula

2. From the inversion of the Hessian matrix 
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2 ⋅EDM = ρ = gTVg

Δs2 = ΔxTAΔx
Covariant metric tensor

V =G−1

Calculation of Hessian is expensive 
(½N2 likelihood evaluations)



Minimization convergence

• After every VariableMetric
step calculate EDM = ½gTVg

• Terminate VM procedure when EDM<0.001
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VariableMetric: start iterating until Edm is < 0.001
VariableMetric: Initial state   - FCN =  -289.1204081677 Edm =      46.0713 NCalls =   1826
VariableMetric: Iteration #   1 - FCN =  -299.3073097602 Edm =      9.18415 NCalls =   2226
VariableMetric: Iteration #   2 - FCN =  -304.9468725143 Edm =      2.22698 NCalls =   2624
VariableMetric: Iteration #   3 - FCN =  -306.3323972775 Edm =      1.43793 NCalls =   3016
VariableMetric: Iteration #   4 - FCN =   -307.199970017 Edm =     0.615574 NCalls =   3410
VariableMetric: Iteration #   5 - FCN =  -307.6493784582 Edm =     0.352904 NCalls =   3804
VariableMetric: Iteration #   6 - FCN =  -307.8960954798 Edm =    0.0749124 NCalls =   4196
VariableMetric: Iteration #   7 - FCN =  -307.9549184882 Edm =    0.0498047 NCalls =   4588
VariableMetric: Iteration #   8 - FCN =  -308.0068371877 Edm =      0.03473 NCalls =   4980
VariableMetric: Iteration #   9 - FCN =  -308.0564661263 Edm =    0.0266955 NCalls =   5372
VariableMetric: Iteration #  10 - FCN =  -308.1092267909 Edm =     0.038622 NCalls =   5764
VariableMetric: Iteration #  11 - FCN =  -308.1547659161 Edm =    0.0290921 NCalls =   6156
VariableMetric: Iteration #  12 - FCN =  -308.1870210082 Edm =   0.00827767 NCalls =   6548
VariableMetric: Iteration #  13 - FCN =  -308.2008924182 Edm =    0.0034224 NCalls =   6940
VariableMetric: Iteration #  14 - FCN =  -308.2064790118 Edm =   0.00151676 NCalls =   7332
VariableMetric: Iteration #  15 - FCN =  -308.2090105175 Edm =   0.00106118 NCalls =   7724
VariableMetric: Iteration #  16 - FCN =  -308.2106535849 Edm =  0.000634155 NCalls =   8116



Minimization convergence

• (Terminate VM procedure when EDM<0.001)
– Note that EDM  up to here was calculated with V from DFP updater formula

• From here on, procedure depends on ‘strategy code’
– Code 0: terminate line search

– Code 2: Recalculate V from G-1 (HESSE)
if EDM(HESSE)>0.001 restart line search, else terminate

– Code 1: If accuracy of Vn from DFP  better than 5% terminate,
else follow Code 2 procedure   

• Strategy 1 is the default. 
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VariableMetric: Iteration #  12 - FCN =  -308.1870210082 Edm =   0.00827767 NCalls =   6548
VariableMetric: Iteration #  13 - FCN =  -308.2008924182 Edm =    0.0034224 NCalls =   6940
VariableMetric: Iteration #  14 - FCN =  -308.2064790118 Edm =   0.00151676 NCalls =   7332
VariableMetric: Iteration #  15 - FCN =  -308.2090105175 Edm =   0.00106118 NCalls =   7724
VariableMetric: Iteration #  16 - FCN =  -308.2106535849 Edm =  0.000634155 NCalls =   8116



Validation of convergence

• For smooth functions covariance estimates from HESSE are 
generally more accurate than those from Davidon-Fletcher-Powell 
but matrix inversion step is vulnerable to singularity issues

• Singularities detected with eigenvalue analysis of Hessian matrix G 
before matrix inversion

– If  ‘smallest eigenvalue’/’largest eigenvalue’ < 10-6 then matrix is declared ‘not 
positive definite’ 

– Note that happens for both negative and small eigenvalues

– In that case an ‘ad-hoc’ term is added to the diagonal of the Hessian matrix to 
force it positive definite so that it can be inverted

• The ‘adjusted’ V from HESSE is then used to calculate the EDM
– EDM estimate less reliable in this case, may cause MINUIT to endlessly go 

back to VariableMetric line search and eventually give up 
‘maximum number of calls exceeded’
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Likelihood models that cause minimization problems

• Example 1 – Strong correlations
– Consider this simple likelihood model with one NP

– What does the likelihood look like, e.g. for N=1000?

– Strong correlations, but numerically feasible
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L1(µ,α) = Poisson(N |µS(1+τα))Gaussian(0 |α,1)

Scan of –log L(μ,α) Error ellipse from V(μ,α) HESSE

ρ=0.9945



Increasing the observed event count

N=1000 N=10.000 N=100.000
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Increasing the observed event count

N=1.000.000 N=10.000.000

Vertical
scale
maximized
at 0.5 units

ρ=-0.9996 ρ=-0.998

HESSE WARNING: 
Matrix not positive definite
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Likelihood models that cause minimization problems

• Example 2 – Hidden strong correlations
– Consider this trivial extension of the previous example with 2 NPs

– Underlying scenario: two (independent) sources of systematic uncertainty that 
have a similar effect on the physics measurement

– What does (profile) likelihood look like for various S? 
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L2 (µ,α1,α2 ) = Poisson(N |µS(1+τ1α1 +τ 2α2 ))Gauss(0 |α1,1)Gauss(0 |α2,1)

− logL(µ,α1,α̂2 ) − logL(µ,α1, ˆ̂α2 (α1,µ)) Error ellipse V(μ,α) HESSE



-logL(μ,α1,α2) – 1000 events
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− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse
from HESSE

Slice in -logL

Profile likelihood



-logL(μ,α1,α2) – 10.000 events
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− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse
from HESSE

Slice in -logL

Profile likelihood

Note that PLL
contours don’t

change between 1K
and 10k!



-logL(μ,α1,α2) – 100.000 events
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− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse
from HESSE

Slice in -logL

Profile likelihood

Note that PLL
contours don’t

change between 10K
and 100k close to min.!
(but onset of fit failures

further away…)



-logL(μ,α1,α2) – 1.000.000 events
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− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse
from HESSE

Slice in -logL

Profile likelihood

Note that PLL
contours don’t

change between 100K
and 1M close to min.!

(but further increase of fit 
failures further away…) HESSE WARNING: 

Matrix not positive definite



Conclusions on strong correlations

• MINUIT can handle strong correlations very well, but at some 
point algorithm breaks down

– Notably HESSE will fail when ratio of weakest-to-strongest eigenvalue < 10-6

• Diagnostic of the existence of strong correlations can be difficult
– In simple models (Ex 1) this is reflected correlation coefficients

– In more complex models (Ex 2) this may not show at all in the correlation 
coefficients because strong ‘N-point correlations’ may still project out to 
modest 2-point correlations (i.e. the usual Pearson correlation coefficients)

– Better diagnostic tools is eigenvalues of Hessian matrix before inversion,
but not (yet) available in Minuit2 [ I am discussing this with ROOT team ]

• Solution: consider to simplify model: 
– If two NPs represent conceptually distinct systematic uncertainties, but their 

effect on the likelihood is virtually identical, then there is effectively a redundant 
degree of freedom. You can eliminate one
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Other likelihood pathologies

• Template morphing algorithms can introduce various other 
pathologies in the likelihood that cause minimizers to fail

– We’ve already seen some of them

• Kinks & Multiple minima
– Caused by (among others) template morphing with piece-wise linear 

interpolation and morphing of (low-statistics) template distributions where MC 
statistical effects are larger than systematic effect 
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Limitations of piece-wise linear interpolation

• Bin-by-bin interpolation looks spectacularly easy and simple, 
but be aware of its limitations

– Same example, but with larger ‘mean shift’ between templates

Wouter Verkerke, NIKHEF

Note double peak structure around |α|=0.5



Non-linear interpolation options

• Piece-wise linear interpolation leads to kink in response functions that 
may result in pathological likelihood functions

• A variety of other interpolation options exist that improve this
– Parabolic interpolation/linear extrapolation (but causes shift of minimum)

– Polynomial interpolation [orders 1,2,4,6]/linear extrapolation (order 1 term allows
for asymmetric modeling of templates)

Wouter Verkerke, NIKHEF

L(α>0) predicts α<0 L(α<0) predicts α>0



Non-linear interpolation options

• Comparison of common interpolation options

Wouter Verkerke, NIKHEF



Other likelihood pathologies

• Effects of likelihood pathologies
– Numerical noise and ‘jumping’ of profile likelihoods

– Example NP (profile) likelihood scan of an ATLAS Higgs trial model

Wouter Verkerke, NIKHEF

Plain likelihood scanProfile likelihood scan

− logL(µ, ˆ

θ )− logL(µ, ˆ̂


θ (µ))

Jump to another minimum solution
in one of the profiled θ parameters

Jitter/noise



Other likelihood pathologies

• Another effect of likelihood pathologies is that calculation of 
derivatives and notably the Hessian from either FDP or HESSE 
matrix become inaccurate

– Slows down minimization

– Can blow up EDM calculation à no convergence

• Red flags: EDM estimates that don’t decrease ~monotonically
– Only possible in Minuit2 (Minuit1 does not report EDM per step)

• Solutions: simplify model: eliminate nuisance parameters that 
suffer from dominant MC statistical effects (causing multiple 
minima, kinks etc…)
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VariableMetric: start iterating until Edm is < 0.001
VariableMetric: Initial state   - FCN =  -289.1204081677 Edm =      46.0713 NCalls =   1826
VariableMetric: Iteration #   1 - FCN =  -299.3073097602 Edm =      9.18415 NCalls =   2226
VariableMetric: Iteration #   2 - FCN =  -304.9468725143 Edm =      2.22698 NCalls =   2624
VariableMetric: Iteration #   3 - FCN =  -306.3323972775 Edm =      1.43793 NCalls =   3016
VariableMetric: Iteration #   4 - FCN =   -307.199970017 Edm =     0.615574 NCalls =   3410
VariableMetric: Iteration #   5 - FCN =  -307.6493784582 Edm =     0.352904 NCalls =   3804
VariableMetric: Iteration #   6 - FCN =  -307.8960954798 Edm =    0.0749124 NCalls =   4196
VariableMetric: Iteration #   7 - FCN =  -307.9549184882 Edm =     0.298047 NCalls =   4588
VariableMetric: Iteration #   8 - FCN =  -308.0068371877 Edm =      3.40473 NCalls =   4980



Other likelihood pathologies

• Note that pathologies can affect calculation of V via 
iterative DFP updating and Hessian inversion differently

• A real-life example of complex likelihood fit where DFP estimate is 
strongly affected by likelihood pathologies

• But other likelihood pathologies can affect Hessian inversion more

V from Davidon-Fletcher-Powell V from inversion of Hessian

Many spurious large correlations



Summary

• A variety of pathological features in likelihood models can interfere 
with minimization

– Strong correlations

– Kinks

– Multiple minima

– ‘Forbidden regions’ where likelihood is not defined

• Problems affect various steps of the minimization process
– Understanding these effects requires basic understanding of the minimization 

algorithms and strategies

• Solutions usually involve simplifications of models

Wouter Verkerke, NIKHEF



Being a good physicist – Understand your model!

• Full (profile) likelihood treats physics and subsidiary measurement 
on equal footing

• Our mental picture:

• Is this picture (always) correct?

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement Subsidiary measurement

“measures s” “measures α”

“dependence on α
weakens inference on s”



Understanding your model – what constrains your NP

• The answer is no – not always! Your physics measurement
may in some circumstances constrain α better than your 
subsidiary measurement.

• Doesn’t happen in Poisson counting example 
– Physics likelihood has no information to distinguish effect of s from effect of α

• But if physics measurement is based on a distribution or 
comprises multiple distributions this is well possible 

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement Subsidiary measurement



Understanding your model – what constrains your NP

• A case study – measuring jet multiplicity (3j,4j,5j)

• Signal mildly peaks in 4j bin, sits on top of a falling background

Wouter Verkerke, NIKHEF

L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)

Effect of changing µEffect of changing αJES



Understanding your model – what constrains your NP

• Now measure (μ,α) from data – 80 events

• Is this fit OK?
– Effect of JES uncertainty propagated in to μ via response modeling in 

likelihood. Increases total uncertainty by about a factor of 2
– Estimated uncertainty on α is not precisely 1, as one would expect

from unit Gaussian subsidiary measurement…  
Wouter Verkerke, NIKHEF

µ̂ =1.0± 0.37

α̂ = 0.01± 0.83

Estimators of
μ, α correlated
due to similar

response in physics
measurement

Uncertainty
on μ with/without 
effect of JES



Understanding your model – what constrains your NP

• The next year – 10x more data  (800 events)
repeat measurement with same model

• Is this fit OK?
– Uncertainty of JES NP much reduced w.r.t. subsidiary meas. (α = 0 ± 1)

– Because the physics likelihood can measure it better than the subsidiary 
measurement (the effect of μ, α are sufficiently distinct that both can be 
constrained at high precision) Wouter Verkerke, NIKHEF

µ̂ = 0.90± 0.13

α̂ = −0.23± 0.31

Estimators of
μ, α correlated
due to similar

response in physics
measurement



Understanding your model – what constrains your NP

• Is it OK if the physics measurement constrains NP associated with 
a systematic uncertainty better than the designated subsidiary 
measurement?

– From the statisticians point of view: no problem, simply a product of two 
likelihood that are treated on equal footing ‘simultaneous measurement’

– From physicists point of view? Measurement is only valid is model is valid.

• Is the probability model of the physics measurement valid?

• Reasons for concern
– Incomplete modeling of systematic uncertainties,

– Or more generally, model insufficiently detailed 

Wouter Verkerke, NIKHEF

L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)



Understanding your model – what constrains your NP

• What did we overlook in the example model?
– The background rate has no uncertainty!

• Insert modeling of background uncertainty

• With improved model
accuracy estimated
uncertainty on both
αJES, μ goes up again…

– Inference weakened
by new degree of
freedom αbkg

– NB αJES estimate still
deviates a bit from normal
distribution estimate… Wouter Verkerke, NIKHEF

L(

N |µ,αJES,αbkg ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ⋅ rb(αbkg )) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1) ⋅Gauss(0 |αbkg,1)

Background rate
subsidiary measurement

Background rate
response function

µ̂ = 0.93± 0.29

α̂JES = 0.90± 0.70

(α̂bkg =1.36± 0.20)



Understanding your model – what constrains your NP

• Lesson learned: if probability model of a physics measurement is 
insufficiently detailed (i.e. flexible) you can underestimate
uncertainties

• Normalized subsidiary measurement provide an excellent 
diagnostic tool

– Whenever estimates of a NP associated with unit Gaussian subsidiary 
measurement deviate from α = 0 ± 1then physics measurement is 
constraining or biases this NP.

• Is ‘over-constraining’ of systematics NPs always bad?
– No, sometimes there are good arguments why a physics measurement can 

measure a systematic uncertainty better than a dedicated calibration 
measurement (that is represented by the subsidiary measurement)

– Example: in sample of reconstructed hadronic top quarks tàbW(qq), the pair 
of light jets should always have m(jj)=mW.  For this special sample of jets it will 
possible to calibrate the JES better than with generic calibration measurement
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Commonly heard  arguments in discussion on over-constraining

• Overconstraining of a certain systematic is OK “because this is what 
the data tell us”

– It is what the data tells you under the hypothesis that your model is correct. The 
problem is usually in the latter condition

• “The parameter αJES should not be interpreted as Jet Energy Scale 
uncertainty provided by the jet calibration group”

– A systematic uncertainty is always combination of response prescription and one or 
more nuisance parameters uncertainties.

– If you implement the response prescription of the systematic, then the NP in your 
model really is the same as the prescriptions uncertainty 

• “My estimate of αJES = 0 ± 0.4 doesn’t mean that the ‘real’ Jet Energy 
Scale systematic is reduced from 5% to 2%

– It certainly means that in your analysis a 2% JES uncertainty is propagated to the 
POI instead of the “official” 5%.

– One can argue that the 5% shouldn’t apply because your sample is special and can 
be calibrated better by a clever model, but this is a physics argument that should 
be documented with evidence for that (e.g. argument JES in tàbW(qq) decays)
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Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• Does “the JES uncertainty is 5% for all jets” mean one NP
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Jet pT

αJES

i.e. JES miscalibration is coherent for all jets
à You can calibrate high pT jets with a low pT jet sample

5%



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?
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Jet pT

i.e. JES miscalibration is not coherent across pT
but still has 5% uncertainty for each pT bin

αJES1
αJES2

αJES3
αJES4

αJES5
5%

5%

5%
5%

5%



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• If you assume one NP – chances are that your physics Likelihood 
will exploit this oversimplified JES model 
to overconstrain JES for high pT jets!
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i.e. JES miscalibration is coherent for all jets
à You can calibrate high pT jets with a low pT jet sample

5%



Modeling theory uncertainties

• Modeling of systematic uncertainties originating from theory 
sources can pose some extra & thorny problems

Wouter Verkerke, NIKHEF



Modeling theory uncertainties

• Difficulties are not in the modeling procedure, but in quantifying what 
precisely we know

• Difficulty 1 – What is distribution of the subsidiary measurement?

• Easy example – Top cross-section uncertainty

• Difficult example – Factorization scale uncertainty

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+εtt ⋅σ tt ) ⋅Gauss( !σ tt |σ tt, 0.08)

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“XS Uncertainty  is 8%” à Gaussian subsidiary with 8% uncertainty
(because XS uncertainty is ultimately from a measurement)  

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian
So what distribution was meant?



Modeling theory uncertainties

• Difficult example – Factorization scale uncertainty

• Difficult arises from imprecision in original prescription.
– NB: Issue is physics question, not a statistical procedure question. Answer will also 

need to be motivated with physics arguments

• Note that you always assume some distribution (even if you do error 
propagation) à Profiling approach requires you to write
it out explicitly. This is good!

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian
So what distribution was meant?



Modeling theory uncertainties

• Difficulty 2 – What are the parameters of the systematic model?

• Easy example – Factorization scale uncertainty

– One parameter: the factorization scale à Clearly described and connected to the 
underlying theory model

– You can ask yourself if there are additional uncertainties in the theory model 
(renormalization scale etc), this a valid, but distinct issue. 

• Difficult example – Hadronization/Fragmentation model
– Source uncertainty: you run different showering MC generators (e.g. HERWIG 

and PYTHIA) and you observe you get different results from your physics analysis
– How do you model this in the likelihood?

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )



Modeling theory uncertainties

• Worst type of ‘theory’ uncertainty are prescriptions that result in 
an observable difference that cannot be ascribed to clearly 
identifiable effects. Examples of such systematic prescriptions

– Evaluate measurement with Herwig and Pythia showering Monte Carlos and 
take the difference as systematic uncertainty

– Evaluate measurement with CTEQ and MRST parton density functions and 
take the difference as systematic uncertainty.

• I call these ‘2-point systematics’. 
– You have the technical means to evaluate (typically) two known different 

configurations, but reasons for underlying difference are not clearly identified.
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Specific issue with theory uncertainties

• It is difficult to define rigorous statistical procedures to deal with 
such 2-point uncertainties. So you need to decide

• If their estimated effect is small, you can pragmatically ignore 
these lack of proper knowledge and ‘just do something 
reasonable’ to model these effects in a likelihood

• If their estimated effect is large, your leading uncertainty is related 
to an effect that largely ununderstood effect. This is bad for 
physics reasons! 

– You should go back to the drawing board and design a new measurement 
that is less sensitive to these issues.

– E.g. If your inclusive cross-section uncertainty is dominated by fullàfiducial
acceptance uncertainty due to Herwig/Pythia issue, shouldn’t you rather be 
publishing the fiducial cross-section?
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Specific issues with theory uncertainties

• Pragmatic solutions to likelihood modeling of ‘2-point systematics’
• Final solution will need to follow usual pattern

• Defining an (empirical) response 
function b(α) is the easy part

• A thorny question remains: 
What is the subsidiary measurement for α?
This should reflect you current knowledge on α.  

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ b(α)) ⋅SomePdf (0 |α)

αgen
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Specific issues with theory uncertainties

• Subsidiary measurement of a theoretical 2-point uncertainty 
effectively quantifies the ‘knowledge’ on these models

– Extra difficult to make meaningful statement about this, since meaning of 
parameter is not well embedded in underlying theory model

– But again, all procedures need to assume some distribution… Profiling requires 
you to spell it out

• Some options and their effects

Wouter Verkerke, NIKHEF
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Two-point systematics on non-counting measurements

• In a counting experiment you can argue 
that for every conceivable background rate 
there exists a value of the NP that 
corresponds to that rate

– Even if ‘SHERPA’ was never used to construct
the model, you can still represent its outcome

• This is not generally true for distributions.
A shape interpolation between 
‘pythia’ and ‘herwig’ does not
necessarily describe shape of 
‘sherpa’ (or of Nature!)

– Fundamental modeling
problem!

– You may need more
parameters… 

Wouter Verkerke, NIKHEF
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Dealing with ‘two-point’ uncertainties

• Key issue: How many d.o.f. does you systematic uncertainty 
have?

• Especially important in the discussion to what extent a two-point 
response function can be over-constrained.

– A result α2p = 0.5 ± 1 has ‘reasonable’ odds to cover the ‘true generator’ 
assuming all generators are normally scattered in an imaginary ‘generator 
space’

Wouter Verkerke, NIKHEF
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Dealing with ‘two-point’ uncertainties

• Key issue: How many d.o.f. does you systematic uncertainty 
have?

• Especially important in the discussion to what extent a two-point 
response function can be over-constrained.

– Does a hypothetical overconstrained result α2p = 0.1 ± 0.2 ‘reasonably’ cover 
the generator model space?

Wouter Verkerke, NIKHEF
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Summary

• The key challenge for experimental physicist is to construct the 
likelihood function describing his analysis/experiment

• ‘Profiling’ is a technique allows to effectively incorporate all model 
uncertainties that are traditionally thought of as ‘systematic 
uncertainties’ 

– By empirically parametrizing the response of the full simulation chain

• Profiling enable used of all fundamental statistical inference 
techniques (frequentist/Bayesian), which start with the likelihood

– A ‘profile likelihood’ allows execution of fundamental statistical techniques 
without cutting corners

– Confidence intervals with guaranteed coverage, Bayesian posteriors, etc

Wouter Verkerke, NIKHEF



Summary

• Profile likelihood implements and diagnoses many analysis issues that 
are missed by naïve approaches to systematic uncertainties (e.g. 
error prop)

– “Posterior correlation” – Effect of correlations between systematics introduced by 
features of the physics measurement

– “Overconstraining” – Either input magnitude was too conservative, or response 
model for systematic uncertainty was too simple (you’d like to know in either case)

– “Imprecisely specified systematics” – Profiling requires physicist to explicit spell out 
precise model that is used

• But is important to run diagnostics on a profile likelihood model
– Default interpretation in case of overconstraining is ‘input uncertainty too 

conservative’, which may lead to underestimated uncertainties if simplistic 
response model was the real problem

• ‘Profiling’ is the best way we know to incorporate systematic 
uncertainties is probability models

Wouter Verkerke, NIKHEF



Fit diagnostics – NP ranking/impact plots

Wouter Verkerke, NIKHEF

Physics data biases / constrains
systematic uncertainty if not 0 +/- 1

Impact quantifies correlation
with POI. Small impact à NP is
(almost) irrelevant for this analysis

Does the fit constrain (reduce) the systematic uncertainty from the data, 
based on the choice of NP model, w.r.t. the input specifications?  
à Diagnostics are crucial!



Fit diagnostics – NP ranking/impact plots
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Physics data biases / constrains
systematic uncertainty if not 0 +/- 1

NP bias or constraint can be due to
1) Statistical fluctuation in data or template (common)
2) Invalid (over)somplified NP model (common)
3) Genuine physics information (not common)

If impact large: always investigate and fix as needed
If impact is small, may ignore, use your judgement

Impact quantifies correlation
with POI. Small impact à NP is
(almost) irrelevant for this analysis

Instructive to look both at expected and observed
NP rankings
• Expected has no data fluctuations (Asimov)
• Additional pulls/constraints in ‘observed’ NP rankings have 

origin in data



Fit diagnostics – NP ranking/impact plots

Wouter Verkerke, NIKHEF

Physics data biases / constrains
systematic uncertainty if not 0 +/- 1

NP bias or constraint can be due to
1) Statistical fluctuation in data or template (common)
2) Invalid (over)somplified NP model (common)
3) Genuine physics information (not common)

If impact large: always investigate and fix as needed
If impact is small, may ignore, use your judgement

Impact quantifies correlation
with POI. Small impact à NP is
(almost) irrelevant for this analysis

Instructive to look both at expected and observed
NP rankings
• Expected has no data fluctuations (Asimov)
• Additional pulls/constraints in ‘observed’ NP rankings have 

origin in data

Visualization of model predictions in observable space useful diagnostic!

• Localize fluctuations in templates that
constrain/pull fits

• Observe magnitude of model change
with variation of NPs within uncertainty

‘ex16.C’


