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The sideband measurement

• Suppose your data 
in reality looks like this è

Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space 

• Full likelihood of the measurement (‘simultaneous fit’)

LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents 
the amount of bkg is the SR. 

Scale factor τ accounts for difference 
in size between SR and CR

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR SR

“Background uncertainty constrained from the data”

[Recap]



Generalizing the concept of the sideband measurement

• Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’

• Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty

– We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement
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Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’

‘Subsidiary measurement’
of background rate

Generalize: ‘sideband’ à ‘subsidiary measurement’

[Recap]



Modeling a detector calibration uncertainty

• Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 

L(N, !α | s,α) = Poisson(N | s+ !b(α / !α) ⋅2)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant), obtained
with a=a˜

Response function
for JES uncertainty
(a 1% JES change 

results in a 2% 
acceptance change)

“Subsidiary measurement”
Encodes ‘external knowledge’ 
on JES calibration

Nominal calibration
Assumed calibration

Uncertainty
on nominal
calibration
(here 5%)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

[Recap]



Modeling a detector calibration uncertainty

• Simplify expression by renormalizing “subsidiary measurement”
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L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant)

Response function
for normalized JES 

parameter
[a unit change in α 

– a 5% JES change –
still results in a 10% 
acceptance change]

“Normalized 
subsidiary measurement”

The scale of parameter
α is now chosen such that 
values ±1 corresponds to the 
nominal uncertainty
(in this example 5%)

Gauss( α |α,σα )

[Recap]



The response function as empirical model of full simulation

• Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain

– But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming

– Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation

– For example run at nominal JES and with JES shifted up and down by ±5%
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L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α

b(
α)

-1 0 +1 0.9

1.0

1.1

Full MC result for JES at -5%

Full MC result for JES at +5%
Empirical approximation
of true response

[Recap]



What is a systematic uncertainty?

• It is an uncertainty in the Likelihood of your physics measurement
that is characterized deterministically, up to a set of parameters,
of which the true value is unknown.

• A fully specified systematic uncertainty defines 
– 1: A set of one or more parameters 

of which the true value is unknown, 
– 2: A response model that describes the effect of those 

parameters on the measurement
(sampled from full simulation, and interpolation)

– 3: A subsidiary measurement of the parameters
that constrains the values the parameters can take
(implies a specific distribution: Gaussian (default, CLT),
Poisson (low-stats counting), or otherwise)
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[Recap]



Piecewise linear interpolation

• Simplest solution is piece-wise linear interpolation for each bin
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Piecewise linear
interpolation
response model
for a one bin

Extrapolation to |α|>1

Kink at α=0

Ensure si(α)≥0

[Recap]



Visualization of bin-by-bin linear interpolation of distribution
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xα

‘ex15_build_binned_morphing.C’[Recap]



Shape, rate or no systematic?

• Be judicious with modeling of systematic with little or no significant 
change in shape (w.r.t MC template statistics)

– Example morphing of a very subtle change in the background model

– Is this a meaningful new degree of freedom in the likelihood model?

– A χ2 or KS test between
nominal and alternate
template can help to decide 
if a shape uncertainty is meaningul

– Most systematic uncertainties
affect both rate and shape, but can make
independent decision on modeling rate (which less likely to affect fit stability)

Wouter Verkerke, NIKHEF

[Recap]



Fit stability due to insignificant shape systematics

• Shape of profile likelihood in NP α clearly raises two points

• 1) Numerical minimization process will be ‘interesting’
• 2) MC statistical effects induce strongly defined minima that are fake

– Because for this example all three templates were sampled from the same parent 
distribution (a uniform distribution)
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+ à
− logλ(α) = − log L(α,

ˆ̂µ)
L(α̂, µ̂)

[Recap]



Recap on shape systematics & template morphing 

• Implementation of shape systematic in 
likelihoods modeling distributions conceptually 
no different that rate systematics in counting 
experiments

• For template modes obtained from MC simulation template 
provides a technical solution to implement response function

– Simplest strategy piecewise linear interpolation,
but only works well for small changes

– Moment morphing better adapted to modeling
of shifting distributions

– Both algorithms extend to n-dimensional
interpolation to model multiple systematic NPs
in response function

– Be judicious in modeling ‘weak’ systematics:
MC systematic uncertainties will dominate likelihood Wouter Verkerke, NIKHEF

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

[Recap]



Other uncertainties in MC shapes – finite MC statistics 

• Modeling MC uncertainties: each MC bin has a Poisson uncertainty
• Thus, apply usual ‘systematics modeling’ prescription.  
• For a single bin – exactly like original counting measurement

Lbin−i (µ) = Poisson(Ni |µ ⋅ !si + !bi )

Lbin−i (µ, si,bi ) = Poisson(Ni |µ ⋅ si + bi )
⋅Poisson(Ni

MC−s | si )
⋅Poisson(Ni

MC−b | bi )

Fixed signal, bkg MC prediction

Signal, bkg
MC nuisance params

Subsidiary measurement for signal MC
(‘measures’ MC prediction si with Poisson uncertainty)

[Recap]



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods
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Statistical 
methods 4 

Parameters of interest vs
nuisance parameters, dealing 
with nuisance parameters in 

inference methods



The statisticians view on nuisance parameters

• In general, our model of the data is not perfect

• Can improve modeling by including additional adjustable parameters
• Goal: some point in the parameter space of the enlarged model 

should be “true”
• Presence of nuisance parameters decreases the sensitivity of the 

analysis of the parameter(s) of interest

Wouter Verkerke, NIKHEF



Treatment of nuisance parameters in variance estimation

• Maximum likelihood estimator of parameter variance 
is based on 2nd derivative of Likelihood 

– For multi-parameter problems this 2nd derivative is generalized 
by the Hessian Matrix of partial second derivatives

• For multi-parameter likelihoods estimate of covariance Vij of pair
of 2 parameters in addition to variance of individual parameters

– Usually re-expressed in terms dimensionless correlation coefficients ρ

Wouter Verkerke, NIKHEF
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Treatment of nuisance parameters in variance estimation

• Effect of NPs on variance estimates visualized
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Treatment of NPs in hypothesis testing and conf. intervals

• We’ve covered frequentist hypothesis testing and interval 
calculation using likelihood ratios based on a likelihood with a 
single parameter (of interest) L(μ)

– Result is p-value on hypothesis with given μ value, or

– Result is a confidence interval [μ-,μ+] with values of μ for which p-value is at or 
above a certain level (the confidence level)

• How do you do this with a likelihood L(μ,θ) where θ is a nuisance 
parameter?

– With a test statistics qμ, we calculate p-value for hypothesis θ as

• But what values of θ do we use for f(qμ|μ,θ)?
Fundamentally, we want to reject μ only if p<α for all θ
à Exact confidence interval
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Hypothesis testing & conf. intervals with nuisance parameters

• The goal is that the parameter of interest should be covered at the 
stated confidence for every value of the nuisance parameter

• if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that value of the 
POI should be considered: 

– e.g. don’t claim discovery if any background scenario is compatible with data

• But: technically very challenging and significant problems with 
over-coverage

– Example: how broadly should ‘any background scenario’ be defined?  Should 
we include background scenarios that are clearly incompatible with the 
observed data?

Wouter Verkerke, NIKHEF, 21



Example of over-coverage

• The 1958 thought expt of David R. Cox focused the issue:
– Your procedure for weighing an object consists of flipping a coin to decide whether 

to use a weighing machine with a 10% error or one with a 1% error; and then 
measuring the weight.

• Then “surely” the error you quote for your measurement should reflect 
which weighing machine you actually used, and not the average error 
of the “whole space” of all measurements!

• But this is not how the classical frequentist confidence interval works!
– Suppose weight=100, coin=‘1% error’ Can you exclude weight=90 at 95% C.L? 
– No: because for ‘coin=10% error‘ weight=90 cannot be excluded at 95% C.L.

• Solution: conditioning on observed data will make result more relevant 
(at expense of exact frequentist coverage)

– Restricting whole space of probabilities to ‘coin=1% error’ only if that is observed 
allows to exclude weight=90 at 95% C.L. 



The profile likelihood construction as compromise

• For LHC the following prescription is used: 

Given L(μ,θ)

perform hypothesis test for each value of μ (the POI), 

using values of nuisance parameter(s) θ that best fit the data 
under the hypothesis μ

• Introduce the following notation

• The resulting confidence interval will have exact coverage for the 
points

– Elsewhere it may overcover or undercover (but this can be checked)

Wouter Verkerke, NIKHEF, 23

)(ˆ̂ µq M.L. estimate of θ for a given value of μ
(i.e. a conditional ML estimate)

))(ˆ̂,( µqµ

POI

NPs



The profile likelihood ratio

• With this prescription we can construct the profile likelihood ratio 
as test statistic

• NB: value profile likelihood ratio does not depend on θ

Wouter Verkerke, NIKHEF, 24
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Profiling illustration with one nuisance parameter

Wouter Verkerke, NIKHEF, 25
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Profile scan of a Gaussian plus Polynomial probability model

Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) 
for each value of fsig
by changing bkg shape params
(a 6th order Chebychev Pol)



Profile scan of a Gaussian plus Polynomial probability model

Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) 
for each value of fsig
by changing bkg shape params
(a 6th order Chebychev Pol)

Interval on μ widens
due to effect of uncertain NPs



PLR Confidence interval vs MINOS

tμ(x,μ)

Profile Likelihood Ratio
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Confidence 
belt now 
range in PLR tμ(x,μ)

Profile Likelihood Ratio
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 θ

Measurement = tμ(xobs,μ) 
is now a function of μ

Asymptotically,
distribution is identical
for all μ

NB: asymptotically, distribution 
is also independent of true 
values of θ



Link between MINOS errors and profile likelihood

• Note that MINOS algorithm in 
MINUIT gives same errors as 
Profile Likelihood Ratio

– MINOS errors is bounding box 
around l(s) contour

– Profile Likelihood = Likelihood
minimized w.r.t. all nuisance 
parameters

Wouter Verkerke, NIKHEF
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NB: Similar to graphical interpretation of variance estimators, but those
always assume an elliptical contour from a perfectly parabolic likelihood 



Summary on NPs in confidence intervals

• Exact confidence intervals are difficult with nuisance parameters
– Interval should cover for any value of nuisance parameters

– Technically difficult and significant over-coverage common

• LHC solution Profile Likelihood ratio à Guaranteed coverage at 
measured values of nuisance parameters only

– Technically replace likelihood ratio with profile likelihood ratio

– Computationally more intensive (need to minimize likelihood w.r.t all nuisance 
parameters for each evaluation of the test statistic), but still very tractable

• Asymptotically confidence intervals constructed with profile 
likelihood ratio test statistics correspond to (MINOS) likelihood 
ratio intervals

– As distribution of profile likelihood becomes asymptotically independent of θ,
coverage for all values of θ restored  

Wouter Verkerke, NIKHEF, 30



Dealing with nuisance parameters in Bayesian intervals

• Elimination of nuisance parameters in Bayesian interval: Integrate 
over the full subspace of all nuisance parameters;

• You are left with posterior pdf for µ

P(µ | x)∝ L(x |µ,

θ )π (µ)π (


θ )( )d


θ∫

µ

θ

)ˆ,ˆ( qµ∫ ´ =),( qµp

Credible interval:
area that integrates 
X% of posterior

P(µ | x)∝ L(x |µ) ⋅π (µ)



Computational aspects of dealing with nuisance parameters

• Dealing with many nuisance parameters is computationally 
intensive in both Bayesian and (LHC) Frequentist approach

• Profile Likelihood approach
– Computational challenge = Minimization of likelihood w.r.t. all nuisance 

parameters for every point in the profile likelihood curve

– Minimization can be a difficult problem, 
e.g. if there are strong correlations, or multiple minima

• Bayesian approach
– Computational challenge = Integration of posterior density of all nuisance 

parameters

– Requires sampling of very potentially very large space.

– Markov Chain MC and importance sampling techniques can help, but still very 
CPU consuming 

Wouter Verkerke, NIKHEF



Nuisance parameters also impact event selection optimization!

• xx

Wouter Verkerke, NIKHEF

If the estimate of the background 
rate B is uncertain then

Figure of Merit 
√q0,A (and also S√B)

overestimate counting model 
significance. Effect depends both 
on B and σ(B) à can also effect 

location of optimum



Nuisance parameters also impact event selection optimization!

• xx

Wouter Verkerke, NIKHEF

Can improve counting model significance estimate used as Figure of 
Merit by including background uncertainty (if known and sizable)

Approximate counting probability model with B uncertainty as

Poisson(Non|μS+B)Poisson(Noff|τB)

NB: Assumes Poisson (not Gaussian) model for B uncertainty.
For x% fractional uncertainty on B choose 

Noff=1/x2 and   τ=Noff/Bnom à B=Bnom,   σ(B)=x%

Signal significance for this model is analytically known in terms of the 
‘Incomplete Beta funtion’

à Easy to use implementation in ROOT (returns significance Z)

^ ^

RooStats::NumberCountingUtils::BinomialObsZ(Double_t nObs, 
Double_t bExp, Double_t fracBUnc) ;



Summary of statistical treatment of nuisance parameters

• Each statistical method has an associated technique to propagate 
the effect of uncertain NPs on the estimate of the POI

– Parameter estimation à Joint unconditional estimation
– Variance estimation à Replace d2L/dp2 with Hessian matrix
– Hypothesis tests & confidence intervals à Use profile likelihood ratio
– Bayesian credible intervals à Integration (‘Marginalization’)

• Be sure to use the right procedure with the right method
– Anytime you integrate a Likelihood you are a Bayesian
– If you are minimizing the likelihood you are usually a Frequentist
– If you sample something chances are you performing either a (Bayesian) 

Monte Carlo integral, or are doing glorified error propagation

• Answers can differ substantially between methods!
– This is not always a problem, but can also be a consequence of a difference in 

the problem statement 

• Don’t forget large nuisance parameters in your event selection 
optimization Wouter Verkerke, NIKHEF


