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Model building 4 
Models with parameters II -

simultaneous fits, representing 
external information as subsidiary 
measurements (‘profile likelihood 

fits’)



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods



So far we’ve only considered the ideal experiment

• The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement

• For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial

• So far only considered a single parameter in the likelihood:
the physics parameter of interest, usually denoted as μ
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏



The imperfect experiment

• In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest

• How do you model these uncertainties in the likelihood? 
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions
are affected by (systematic) uncertainties



Adding parameters to the model

• We can describe uncertainties in our model by adding new 
parameters of which the value is uncertain

• These additional model parameters are not ‘of interest’, but we 
need them to model uncertainties à ‘Nuisance parameters’
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )

L(
!
N |µ) = Poisson(Ni |µ ⋅ !si + !bi )

bins
∏



What are the nuisance parameters of your physics model?

• Empirical modeling of uncertainties, e.g. polynomial for background, 
Gaussian for signal, is easy to do, but may lead to hard questions

• Is your model correct? (Is true signal distr. captured by a Gaussian?)
• Is your model flexible enough? (4th order polynomial, or better 6th)?

• How do model parameters connect to known detector/theory 
uncertainties in your distribution? 

– what conceptual uncertainty do your parameters represent?
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )



What information constrains nuisance parameters?

• Some datasets contain sufficient information to constrain nuisance 
parameters, other do not.
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Example 1 – Shape fit Example 2 – Counting experiment

f(x|S,B)=S*Gaussian(x)+B*Uniform(x) f(N|S,B)=Poisson(N|S+B)

Sufficient information
in data to constrain both S,B

Insufficient information
in data to constrain both S,B

à Need additional measurement of B



Simultaneous fits / joint likelihoods

• If >1 measurements exist that constrain (nuisance) parameters,
can combine information by formulating a joint likelihood

• No constraints shapes or forms of Likelihood
– Can combine counting measurement, shape measurement

– Likelihoods can have same observables, different observables, all OK

– Only condition is that parameter have same meaning in all measurements   
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LA(x|S,B) LB(y|B)

L(x,y|S,B)A+B = LA(x|S,B)*LB(y|B)

‘ex17_combined.C’



Constraining a nuisance parameter from a control region

• Solution for Poisson counting measurement P(N|S+B) 
with unconstrained B is to join with 
measurement in a control region that measures B only
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LSIG(Nsig|S,B)=Poisson(Nsig|S+B) LCTL=Poisson(NCTL|τ*B)

Ljoint(NSIG,NCTL|S,B)A+B = Poisson(Nsig|S+B)*Poisson(NCTL|τ*B)

Sufficient information in joint Likelihood to solve for both S and B



Constraining parameters from >>1 region

• Inference from joint likelihood models combines information from 
all measurements that carry information on a given parameter

– Can also combine many measurements that constrain the same parameter

• So can also do LSIG1 + LSIG2 +…+ LSIGN instead of LSIG + LCTL
or any combination of signal and control regions 
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W+b(b) enriched
control region

Z+b(b) enriched
control regionExample: 

Higgs channels from ATLAS and CMS, 
along with the background control regions

All channels measure common 
Higgs signal strength modifier

(=deviation of expectation from SM)



Splitting signal regions by expected purity

• Another common strategy that results in >>1 signal region,
is to split an existing (big) signal region in multiple regions
that have different expected purity

• Prototypical problem – MVA classifier sorts observed events by purity
– If MVA shape is trusted (well understood in simulation) à fit MVA distribution
– But MVA classification is not well trusted, then what?

• If another discriminating observable exists (e.g. invariant mass)
– Train MVA without this observable
– Fit ‘invariant mass’ in bins of MVA observable 

à Measures signal count independent of MVA prediction
– Exploits difference in purity across MVA prediction range 

without relying on its predicted distribution
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Visualization of signal region splitting

• Split data in regions by BDT score, fit each region with inv. mass

fbin−i (m | S,B) =
S
fsig
bin−i

fS (m)+ Bbin−i fB (s)

(S / fsig
bin−i )

(S / fsig
bin−i )+ B

BDT bin

Fitted purity
in each bin

Scale factor that ensures
that every bin interprets 
S as the total signal yield



Visualization of signal region splitting

• Split data in regions by BDT score, fit each region with inv. mass

fbin−i (m | S,B) =
S
fsig
bin−i

fS (m)+ Bbin−i fB (s)

(S / fsig
bin−i )

(S / fsig
bin−i )+ B

BDT bin

Fitted purity
in each bin

Scale factor that ensures
that every bin interprets 
S as the total signal yield

fbin−0 (m | S,B0 ) =
S
fsig
bin−0

fS (m)+ Bbin−0 fB (s)

fbin−1(m | S,B1) =
S
fsig
bin−1

fS (m)+ Bbin−1 fB (s)

fbin−2 (m | S,B2 ) =
S
fsig
bin−2

fS (m)+ Bbin−2 fB (s)

fbin−3(m | S,B3) =
S
fsig
bin−3

fS (m)+ Bbin−3 fB (s)

fbin−N (m | S,BN ) =
S
fsig
bin−N

fS (m)+ Bbin−N fB (s)

f (m,nBDT | S,
!
B) = lookup(nBDT )

!

Joint PDF for 
this model

// Construct template model
w.factory("SUM::fit_template(prod(Nsig[30,0,100],frac[1])*sig1,

Nbkg[1000,0,10000]*bkg1)") ;

// Construct joint model from template clones
w.factory("SIMCLONE::fitmodel(fit_template,

$SplitParam({Nbkg,frac},bdtBin))") ;



The imperfect experiment

• When relying on simulation templates to build models, a whole 
world of problems awaits when considering that simulation 
predictions have many systematic uncertainties associated with 
them?
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions
are affected by (systematic) uncertainties

‘ex13_build_binned.C’



The simulation workflow and origin of uncertainties

Wouter Verkerke, NIKHEF
Wouter Verkerke, NIKHEF 

Simulation of high-energy
physics process
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physics process
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Typical systematic uncertainties in HEP

• Detector-simulation related
– “The Jet Energy scale uncertainty is 5%”

– “The b-tagging efficiency uncertainty is 20% for jets with pT<40”

• Physics/Theory related
– The top cross-section uncertainty is 8%

– “Vary the factorization scale by a factor 0.5 and 2.0 and consider the 
difference the systematic uncertainty”

– “Evaluate the effect of using Herwig and Pythia and consider the difference 
the systematic uncertainty”

• MC simulation statistical uncertainty
– Effect of (bin-by-bin) statistical uncertainties in MC samples 

Wouter Verkerke, NIKHEF



What can you do with systematic uncertainties

• As most of the typical systematic prescriptions have no immediately 
apparent parametric formulation in your likelihood, common approach 
is ‘vary setting, rerun analysis, observe the difference’ 

• This common ‘naïve’ approach to assess effect of systematic 
uncertainties amounts to simple error propagation

• Error propagation procedure in a nutshell
– Make nominal measurement (using your favorite statistical inference procedure)

– Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1 
sigma’ up and down ) Redo measurement procedure for each shift

– Consider propagated effect of shifted setting the systematic uncertainty
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µ = µnom ±σ stat ± (µsyst
up −µsyst

down ) / 2±...

From statistical
analysis

Systematic uncertainty
from error propagation



Pros and cons of the ‘naïve’ approach

• Pros
– It’s easy to do

– It results in a seemingly easy-to-interpret table of systematics

• Cons
– Uncorrelated source of systematic uncertainty can have correlated effect on 

measurement à Completely ignored

– Magnitude of stated systematic uncertainty may be incompatible with 
measurement result à Completely ignored 

– You lost the connection with fundamental statistical techniques 
(i.e. evaluation of systematic uncertainties is completely detached from 
statistical procedure used to estimate physics quantity of interest) à No 
prescription to make confidence intervals, Bayesian posteriors etc in this way

– No calibrated probabilistic statements possible (95% C.L.)

• ‘Profiling’ à Incorporate a description of systematic uncertainties 
in the likelihood function that is used in statistical procedures 

Wouter Verkerke, NIKHEF



Everything starts with the likelihood

• All fundamental statistical procedures are based on the likelihood 
function as ‘description of the measurement’

Frequentist statistics 

Confidence interval on s Posterior on s s = x ± y

Bayesian statistics Maximum Likelihood

Nobs e.g. L(15|s=0)
e.g. L(15|s=10)



Everything starts with the likelihood
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Frequentist statistics 

Confidence interval
or p-value

Posterior on s
or Bayes factor

s = x ± y

Bayesian statistics Maximum Likelihood

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd






Introducing uncertainties – a non-systematic example

• The original model (with fixed b)

• Now consider b to be uncertain

• The experimental data contains insufficient to constrain both
s and b à Need to add an additional measurement to constrain b

Wouter Verkerke, NIKHEF

s=0

s=5

s=10
s=15

L(N|s) à L(N|s,b)



The sideband measurement

• Suppose your data 
in reality looks like this è

Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space 

• Full likelihood of the measurement (‘simultaneous fit’)

LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents 
the amount of bkg is the SR. 

Scale factor τ accounts for difference 
in size between SR and CR

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR SR

“Background uncertainty constrained from the data”

‘ex11_build_PoissonPoisson.C’



Generalizing the concept of the sideband measurement

• Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’

• Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty

– We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement

Wouter Verkerke, NIKHEF

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’

‘Subsidiary measurement’
of background rate

Generalize: ‘sideband’ à ‘subsidiary measurement’

‘ex12_build_PoissonGaussGlobs.C’



What is a systematic uncertainty?

• Concept & definitions of ‘systematic uncertainties’ originates from 
physics, not from fundamental statistical methodology.

– E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” 
does not discuss systematic uncertainties at all

• A common definition is
– “Systematic uncertainties are all uncertainties that are 

not directly due to the statistics of the data”

• But the notion of ‘the data’ is a key source of ambiguity: 
– does it include control measurements?
– does it include measurements that were used to perform basic 

(energy scale) calibrations?

Wouter Verkerke, NIKHEF



Typical systematic uncertainties in HEP

• Detector-simulation related
– “The Jet Energy scale uncertainty is 5%”
– “The b-tagging efficiency uncertainty is 20% 

for jets with pT<40”

• Physics/Theory related
– The top cross-section uncertainty is 8%
– “Vary the factorization scale by a factor 0.5 

and 2.0 and consider the difference 
the systematic uncertainty”

– “Evaluate the effect of using 
Herwig and Pythia and consider the difference 
the systematic uncertainty”

• MC simulation statistical uncertainty
– Effect of (bin-by-bin) statistical uncertainties

in MC samples 

Wouter Verkerke, NIKHEF

Subsidiary measurement
is an actual measurement
à conceptually similar to 

a ‘sideband’ fit

Subsidiary measurement
unclear, but origin of
prescription may well
be another measurement
(if yes, like sideband, if
no, what is source of info?)

Subsidiary measurement
is a Poisson counting
experiment (but now in
MC events), otherwise
conceptually identical to
a ‘sideband fit’



Typical systematic uncertainties in HEP

• Detector-simulation related
– “The Jet Energy scale uncertainty is 5%”
– “The b-tagging efficiency uncertainty is 20% 

for jets with pT<40”

• Physics/Theory related
– The top cross-section uncertainty is 8%
– “Vary the factorization scale by a factor 0.5 

and 2.0 and consider the difference 
the systematic uncertainty”

– “Evaluate the effect of using 
Herwig and Pythia and consider the difference 
the systematic uncertainty”

• MC simulation statistical uncertainty
– Effect of (bin-by-bin) statistical uncertainties

in MC samples 
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Subsidiary measurement
is an actual measurement
à conceptually to 

a ‘sideband’ fit

Subsidiary measurement
unclear, but origin of
prescription may well
be another measurement
(if yes, like sideband, if
no, what is source of info?)

Subsidiary measurement
is a Poisson counting
experiment (but now in
MC events), otherwise
conceptually identical to
a ‘sideband fit’

Almost all systematic uncertainties are similar in nature 
to ‘sidebands’ measurements of some form or shape

à Can always model systematics like sidebands 
in the Likelihood

And even when the are not the (in)direct result of 
some measurement (certainty theory uncertainties)
we can still model them in that form



Modeling a detector calibration uncertainty

• Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 

L(N, !α | s,α) = Poisson(N | s+ !b(α / !α) ⋅2)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant), obtained
with a=a˜

Response function
for JES uncertainty
(a 1% JES change 

results in a 2% 
acceptance change)

“Subsidiary measurement”
Encodes ‘external knowledge’ 
on JES calibration

Nominal calibration
Assumed calibration

Uncertainty
on nominal
calibration
(here 5%)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)



Modeling a detector calibration uncertainty

• Simplify expression by renormalizing “subsidiary measurement”

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant)

Response function
for normalized JES 

parameter
[a unit change in α 

– a 5% JES change –
still results in a 10% 
acceptance change]

“Normalized 
subsidiary measurement”

The scale of parameter
α is now chosen such that 
values ±1 corresponds to the 
nominal uncertainty
(in this example 5%)

Gauss( α |α,σα )



The response function as empirical model of full simulation

• Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain

– But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming

– Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation

– For example run at nominal JES and with JES shifted up and down by ±5%

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α

b(
α)

-1 0 +1 0.9

1.0

1.1

Full MC result for JES at -5%

Full MC result for JES at +5%
Empirical approximation
of true response



What is a systematic uncertainty?

• It is an uncertainty in the Likelihood of your physics measurement
that is characterized deterministically, up to a set of parameters,
of which the true value is unknown.

• A fully specified systematic uncertainty defines 
– 1: A set of one or more parameters 

of which the true value is unknown, 
– 2: A response model that describes the effect of those 

parameters on the measurement
(sampled from full simulation, and interpolation)

– 3: A subsidiary measurement of the parameters
that constrains the values the parameters can take
(implies a specific distribution: Gaussian (default, CLT),
Poisson (low-stats counting), or otherwise)

Wouter Verkerke, NIKHEF



Names and conventions – ‘profiling’ & ‘constraints’

• The full likelihood function of the form 

is usually referred to by physicists as a ‘profile likelihood’, and 
systematics are said to be ‘profiled’ when incorporated this way

– Note: statisticians use the word profiling for something else

• Physicists often refer to the subsidiary measurement as a 
‘constraint term’

– This is correct in the sense that it constrains the parameter α, but this labeling
commonly lead to mistaken statements (e.g. that it is a pdf for α)

– But it is not a pdf in the NP

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

Gauss(0 |α,1)Gauss(α | 0,1)

‘ex12_build_PoissonGaussGlobs.C’



Names and conventions

• The ‘subsidiary measurement’ as simplified form of the ‘full 
calibration measurement’ also illustrates another important point

– The full likelihood is simply a joint likelihood of a physics measurement and a 
calibration measurement where both terms are treated on equal footing in the 
statistical procedure

– In a perfect world, not bound by technical modelling constraints
you would use this likelihood

where LJES is the full calibration measurement as performed by the Jet 
calibration group, based on a dataset y, and which may have other 
parameters θ specific to the calibration measurement.

• Since we are bound by technical constrains, we substitute LJES
with simplified (Gaussian) form, but the statistical treatment and 
interpretation remains the same

Wouter Verkerke, NIKHEF

L(N, y | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅LJES (
y |α,


θ )



Gamma and logNormal distributions

Wouter Verkerke, NIKHEF, 153

Gamma distribution
=distribution of µ resulting from
a Poisson measurement L(N|µ)

logNormal distribution



MC statistical uncertainties as systematic uncertainty

• Another example of modeling a systematic uncertainty:
MC statistical uncertainty

• Follow same procedure again as before: 
– Define response function (this is trivial for MC statistics: 

it is the luminosity ratio of the MC sample and the data sample)
– Define distribution for the ‘subsidiary measurement’ – This is a Poisson 

distribution – since MC simulation is also a Poisson process
– Construct full likelihood (‘profile likelihood’)

• Note uncanny similarity to full likelihood of a sideband measurement! 

Wouter Verkerke, NIKHEF

L(N,NMC | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)
Constant factor τ = L(MC)/L(data)

L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)



Modeling multiple systematic uncertainties

• Introduction of multiple systematic uncertainties presents no 
special issues

• Example JES uncertainty plus generator ISR uncertainty

• A brief note on correlations
– Word “correlations” often used sloppily – proper way is to think of correlations 

of parameter estimators. Likelihood defines parameters αJES, αISR. 
The (ML) estimates of these are denoted

– The ML estimators of               using the Likelihood of the subsidiary 
measurements are uncorrelated (since the product factorize in this example)

– The ML estimators of               using the full Likelihood may be correlated.
This is due to physics modeling effects encoded in the joint response function 

Wouter Verkerke, NIKHEF

L(N, 0 | s,αJES,α ISR ) = P(N | s+ b(1+ 0.1αJES + 0.05α ISR )) ⋅G(0 |αJES,1) ⋅G(0 |α ISR,1)

Joint response function
for both systematics

One subsidiary
measurement for each
source of uncertainty

α̂JES,α̂ ISR

α̂JES,α̂ ISR

α̂JES,α̂ ISR



Modeling systematic uncertainties in multiple channels

• Systematic effects that affect multiple measurements should be 
modeled coherently.

– Example – Likelihood of two Poisson counting measurements

– Effect of changing JES parameter αJES coherently affects both measurement.

– Magnitude and sign effect does not need to be same, this is dictated by the 
physics of the measurement 

Wouter Verkerke, NIKHEF

L(NA,NB | s,αJES ) = P(NA | s ⋅ fA + bA (1+ 0.1αJES )) ⋅P(NB | s ⋅ fB + bB (1− 0.3αJES )) ⋅G(0 |αJES,1) ⋅

JES response 
function for 
channel A

JES response 
function for 
channel B

JES
subsidiary

measurement



Introducing response functions for shape uncertainties 

• Modeling of systematic uncertainties in Likelihoods describing 
distributions follows the same procedure as for counting models

– Example: Likelihood modeling 
distribution in a di-lepton invariant
mass. POI is the signal strength μ

• Consider a lepton energy scale 
systematic uncertainty that affects this measurement

– The LES has been measured with a 1% precision

– The effect of LES on mll has been determined to a 2% shift for 1% LES change

Wouter Verkerke, NIKHEF

L( mll |µ) = µ ⋅Gauss(mll
(i), 91,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

Response function Subsidiary measurement



Response modeling for distributions

• For a change in the rate, response 
modeling of histogram-shaped 
distribution is straightforward:
simply scale entire distribution

• But what about a systematic uncertainty that shifts the mean,
or affects the distribution in another way?

Wouter Verkerke, NIKHEF

L(
!
N |µ) = Poisson(

i
∏ Ni |µ !si + !bi )

L(
!
N |µ,α) = Poisson(

i
∏ Ni |µ !si ⋅ (1+3.75α)+ !bi ) ⋅Gauss(0 |α,1)

Response function
for signal rate

Subsidiary 
measurement



Modeling of shape systematics in the likelihood

• Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain

– Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ 
settings of systematic effect

• Challenge: construct an empirical response function based on 
the interpolation of the shapes of these three templates. 

Wouter Verkerke, NIKHEF

‘-1σ’ ‘nominal’ ‘+1σ’



Need to interpolate between template models

• Need to define ‘morphing’ algorithm to define 
distribution s(x) for each value of α

Wouter Verkerke, NIKHEF
s(x,α=-1)

s(x,α=0)

s(x,α=+1)
s(x)|α=-1

s(x)|α=0

s(x)|α=+1



Piecewise linear interpolation

• Simplest solution is piece-wise linear interpolation for each bin

Wouter Verkerke, NIKHEF

Piecewise linear
interpolation
response model
for a one bin

Extrapolation to |α|>1

Kink at α=0

Ensure si(α)≥0



Visualization of bin-by-bin linear interpolation of distribution

Wouter Verkerke, NIKHEF

xα

‘ex15_build_binned_morphing.C’



There are other morphing algorithms to choose from

Wouter Verkerke, NIKHEF, 163

Vertical
Morphing

Horizontal
Morphing

Moment
Morphing

Gaussian
varying
width

Gaussian
varying
mean

Gaussian
to

Uniform
(this is

conceptually ambigous!)

n-dimensional
morphing? ✔ ✗ ✔



Piece-wise interpolation for >1 nuisance parameter

• Concept of piece-wise linear interpolation can be trivially extended 
to apply to morphing of >1 nuisance parameter.

– Difficult to visualize effect on full distribution, but easy to understand concept 
at the individual bin level

Wouter Verkerke, NIKHEF

Visualization of 2D interpolation



Shape, rate or no systematic?

• Be judicious with modeling of systematic with little or no significant 
change in shape (w.r.t MC template statistics)

– Example morphing of a very subtle change in the background model

– Is this a meaningful new degree of freedom in the likelihood model?

– A χ2 or KS test between
nominal and alternate
template can help to decide 
if a shape uncertainty is meaningul

– Most systematic uncertainties
affect both rate and shape, but can make
independent decision on modeling rate (which less likely to affect fit stability)

Wouter Verkerke, NIKHEF



Fit stability due to insignificant shape systematics

• Shape of profile likelihood in NP α clearly raises two points

• 1) Numerical minimization process will be ‘interesting’
• 2) MC statistical effects induce strongly defined minima that are fake

– Because for this example all three templates were sampled from the same parent 
distribution (a uniform distribution)

Wouter Verkerke, NIKHEF

+ à
− logλ(α) = − log L(α,

ˆ̂µ)
L(α̂, µ̂)



Recap on shape systematics & template morphing 

• Implementation of shape systematic in 
likelihoods modeling distributions conceptually 
no different that rate systematics in counting 
experiments

• For template modes obtained from MC simulation template 
provides a technical solution to implement response function

– Simplest strategy piecewise linear interpolation,
but only works well for small changes

– Moment morphing better adapted to modeling
of shifting distributions

– Both algorithms extend to n-dimensional
interpolation to model multiple systematic NPs
in response function

– Be judicious in modeling ‘weak’ systematics:
MC systematic uncertainties will dominate likelihood Wouter Verkerke, NIKHEF

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)



Example 1: counting expt

• Will now demonstrate how to 
construct a model for a 
counting experiment with
a systematic uncertainty

Wouter Verkerke, NIKHEF

// Subsidiary measurement of alpha
w.faxtory(“Gaussian::subs(0,alpha[-5,5],1)”) ;

// Response function mu(alpha)
w.factory(“expr::mu(‘s+b(1+0.1*alpha)’,s[20],b[20],alpha)”) ;  

// Main measurement 
w.factory(“Poisson::p(N[0,10000],mu)”);

// Complete model Physics*Subsidiary
w.factory(“PROD::model(p,subs)”) ;

L(N | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)



Example 2: unbinned L with syst. 

• Will now demonstrate how to 
code complete example of
the unbinned profile likelihood 
of Section 5:

Wouter Verkerke, NIKHEF

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES ),1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

// Subsidiary measurement of alpha
w.factory(“Gaussian::subs(0,alpha[-5,5],1)”);

// Response function m(alpha)
w.factory(“expr::m_a(“m*(1+2alpha)”,m[91,80,100],alpha)”) ;  

// Signal model
w.factory(“Gaussian::sig(x[80,100],m_a,s[1])”)

// Complete model Physics(signal plus background)*Subsidiary
w.factory(“PROD::model(SUM(mu[0,1]*sig,Uniform::bkg(x)),subs)”) ;



Example 3 : binned L with syst

• Example of template morphing
systematic in a binned likelihood

Wouter Verkerke, NIKHEF

L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) ⋅G(0 |α,1)
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// Import template histograms in workspace
w.import(hs_0,hs_p,hs_m) ;

// Construct template models from histograms
w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ;
w.factory(“HistFunc::s_p(x,hs_p)”) ;
w.factory(“HistFunc::s_m(x,hs_m)”) ;

// Construct morphing model
w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ; 

// Construct full model
w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ;



Other uncertainties in MC shapes – finite MC statistics 

• In practice, MC distributions used for template fits have finite 
statistics.

• Limited MC statistics represent an uncertainty on your model 
à how to model this effect in the Likelihood?

Wouter Verkerke, NIKHEF



Other uncertainties in MC shapes – finite MC statistics 

• Modeling MC uncertainties: each MC bin has a Poisson uncertainty
• Thus, apply usual ‘systematics modeling’ prescription.  
• For a single bin – exactly like original counting measurement

Lbin−i (µ) = Poisson(Ni |µ ⋅ !si + !bi )

Lbin−i (µ, si,bi ) = Poisson(Ni |µ ⋅ si + bi )
⋅Poisson(Ni

MC−s | si )
⋅Poisson(Ni

MC−b | bi )

Fixed signal, bkg MC prediction

Signal, bkg
MC nuisance params

Subsidiary measurement for signal MC
(‘measures’ MC prediction si with Poisson uncertainty)



Nuisance parameters for template statistics

• Repeat for all bins

• Result: accurate model for MC statistical uncertainty, but lots of 
nuisance parameters (#samples x #bins)...

L(
!
N |µ) = P(Ni |µ ⋅ !si + !bi )

bins
∏

L(
!
N |µ, !s,

!
b) = P(Ni |µ ⋅ si + bi )

bins
∏ P(!si | si

bins
∏ ) P( !bi | bi

bins
∏ )

Binned likelihood 
with rigid template

Response function
w.r.t. s, b as parameters

2x Nbins subsidiary 
measurements
of s ,b from s~,b~



The effect of template statistics

• When is it important to model the effect of template 
statistics in the likelihood

– Roughly speaking the effect of template statistics becomes 
important when Ntempl< 10x Ndata (from Beeston & Barlow)

• Measurement of effect of template statistics in 
previously shown toy likelihood model, where
POI is the signal yield

Wouter Verkerke, NIKHEF, 174

‘model 2 – Beeston-Barlow likelihood’
‘model 1 – plain template likelihood’

NMC=Ndata

NMC=10Ndata

Note that even at
NMC=10Ndata
uncertainty on POI 
can be underestimated
by 10% without BB



Reducing the number NPs – Beeston-Barlow ‘lite’ 

• Another approach that is being used is called ‘BB’ – lite
• Premise: effect of statistical fluctuations on sum of templates is 

dominant à Use one NP per bin instead of one NP per 
component per bin 

L(

N | n) = P(Ni | ni )

bins
∏ P(si + bi | ni

bins
∏ )

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

Response function
w.r.t. n as parameters

Subsidiary measurements
of n from s~+b~

Normalized NP lite model (nominal value of all γ is 1)

L(

N | s,


b) = P(Ni | si + bi )

bins
∏ P(si | si

bins
∏ ) P( bi | bi

bins
∏ )

‘Beeston-Barlow’

‘Beeston-Barlow lite ’



The interplay between shape systematics and MC systematics

• Best practice for template morphing models is to also include effect 
of MC systematics

• Note that that for every ‘morphing systematic’ there is an set of two 
templates that have their own (independent) MC statistical 
uncertainties.

– A completely accurate should model MC stat uncertainties of all templates

• But has severe practical problems
– Can only be done in ‘full’ Beeston-Barlow model, not in ‘lite’ mode, enormous 

number of NP models with only a handful of shape systematics…
Wouter Verkerke, NIKHEF
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Morphing response function Subsidiary measurements



The interplay between shape systematics and MC systematics

• Commonly chosen 
practical solution

• Approximate MC template statistics already significantly improves 
influence of MC fluctuations on template morphing

– Because ML fit can now ‘reweight’ contributions of each bin 
Wouter Verkerke, NIKHEF

L(

N | s,
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b) = P(Ni |γ i ⋅[si (α, si
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0, si

+ )+ bi ])
bins
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si (α,...) =
si
0 +α ⋅ (si
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Morphing & MC response function

Models relative MC rate uncertainty for each bin w.r.t the nominal 
MC yield, even if morphed total yield is slightly different

Subsidiary measurements

without BB-L
with BB-L



Pruning complexity – MC statistical for selected bins

• Can also make decision to model MC statistical uncertainty on a 
bin-by-bin basis

– No modeling for high statistics bins

– Explicit modeling for low-statistics bins

Wouter Verkerke, NIKHEF

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

low−stats bins
∏ )) δ(γ i )

hi−stats bins
∏



Adapting binning to event density

• Effect of template statistics can also be controlled by rebinning
data such all bins contain expected and observed events

– For example choose binning such that expected background has a uniform 
distribution (as signals are usually small and/or uncertain they matter less)

Wouter Verkerke, NIKHEF



Example 4 – Beeston-Barlow light

• Beeston-Barlow-(lite) modeling
of MC statistical uncertainties

Wouter Verkerke, NIKHEF

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

// Import template histogram in workspace
w.import(hs) ;

// Construct parametric template models from histograms
// implicitly creates vector of gamma parameters
w.factory(“ParamHistFunc::s(hs)”) ;

// Product of subsidiary measurement
w.factory(“HistConstraint::subs(s)”) ; 

// Construct full model
w.factory(“PROD::model(s,subs)”) ;



Example 5 – BB-lite + morphing

• Template morphing model
with Beeston-Barlow-lite
MC statistical uncertainties

L(

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b) = P(Ni |γ i ⋅[si (α, si
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// Import template histograms in workspace
w.import(hs_0,hs_p,hs_m,hb) ;

// Construct parametric template morphing signal model
w.factory(“ParamHistFunc::s_p(hs_p)”) ;
w.factory(“HistFunc::s_m(x,hs_m)”) ;
w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ;
w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ; 

// Construct parametric background model (sharing gamma’s with s_p)
w.factory(“ParamHistFunc::bkg(hb,s_p)”) ;

// Construct full model with BB-lite MC stats modeling
w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),

HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ;


