Model building 4

Models with parameters |l -
simultaneous fits, representing
external information as subsidiary
measurements (‘profile likelihood
fits’)
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Roadmap of this course

e Start with basics, gradually build up to complexity

Model building Statistical methods

Counting models

Statistical tests with counting experiments

Modeling distributions

Test statistics for models describing distributions

Signal parameterization strategies

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Inference with nuisance parameters

Diagnosing inference on complex models

Advanced signal modeling techniques




So far we’ve only considered the ideal experiment

e The “only thing” you need to do (as an experimental physicist) is to
formulate the likelihood function for your measurement

e F[or an ideal experiment, where signal and background are
assumed to have perfectly known properties, this is trivial

L(N )=

n Poisson(N, @i +b,)

bins
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e So far only considered a single parameter in the likelihood:
the physics parameter of interest, usually denoted as u
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The imperfect experiment

¢ |n realistic measurements many effect that we don’t control
exactly influence measurements of parameter of interest

e How do you model these uncertainties in the likelihood?

Ak

Signal and background predictions
are affected by (systematic) uncertainties

P A IR
96 98 100
X
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Adding parameters to the model

e \Ne can describe uncertainties in our model by adding new

parameters of which the value is uncertain

L(N | u)= nPoisson(Ni lu-s, +15l.)
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L(x|f,m,0,a,,q,,a,)= fG(x,m,0)+(1- f)Poly(x,a,,a,,a,)

e These additional model parameters are not ‘of interest’, but we
need them to model uncertainties - ‘Nuisance parameters’
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What are the nuisance parameters of your physics model?

e Empirical modeling of uncertainties, e.g. polynomial for background,
Gaussian for signal, is easy to do, but may lead to hard questions

Events/(0.2)
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L(x|f,m,0,a,,qa,,a,)= fG(x,m,0)+(1- f)Poly(x,a,,qa,,a,)

e [s your model correct? (Is true signal distr. captured by a Gaussian?)
e |s your model flexible enough? (4™ order polynomial, or better 6)?

e How do model parameters connect to known detector/theory
uncertainties in your distribution?

— what conceptual uncertainty do your parameters represent?
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What information constrains nuisance parameters?

e Some datasets contain sufficient information to constrain nuisance

parameters, other do not.
Example 1 — Shape fit

f(x|S,B)=S*Gaussian(x)+B*Uniform(x)

N
o

Sufficient information
in data to constrain both S,B

Projection of p

Example 2 - Counting experiment

f(N|S,B)=Poisson(N|S+B)
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OO

Insufficient information
in data to constrain both S,B
- Need additional measurement of B
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Simultaneous fits / joint likelihoods

e |f >1 measurements exist that constrain (nuisance) parameters,
can combine information by formulating a joint likelihood

LA(X[S,B) Lg(y[B)

LYIS,B)ass = La(X[S,B)"Ls(yIB)

e No constraints shapes or forms of Likelihood
— (Can combine counting measurement, shape measurement
— Likelihoods can have same observables, different observables, all OK

— Only condition is that parameter have same meaning in all measurements
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Constraining a nuisance parameter from a control region

e Solution for Poisson counting measurement P(N|S+B)
with unconstrained B is to join with
measurement in a control region that measures B only

IS+B)  Lop =Poisson(Ner [TB)

/

Lioint(Nsic:Neri 1S,B)ass = Poisson(Ng|S+B)*Poisson(Ngr [TB)

Lsig(NgglS,B)=Poisson(Ng

Sufficient information in joint Likelihood to solve for both S and B
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Constraining parameters from >>1 region

e |nference from joint likelihood models combines information from
all measurements that carry information on a given parameter

— Can also combine many measurements that constrain the same parameter

e Socanalso do Lggy+ Lggo +...+ Lggy Instead of Lgg + Lo
or any combination of signal and control regions
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Higgs channels from ATLAS and CMS,
along with the background control regions
All channels measure common
Higgs signal strength modifier
(=deviation of expectation from SM)
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Splitting signal regions by expected purity

* Another common strategy that results in >>1 signal region,
is to split an existing (big) signal region in multiple regions
that have different expected purity
e Prototypical problem — MVA classifier sorts observed events by purity
— If MVA shape is trusted (well understood in simulation) = fit MVA distribution
— But MVA classification is not well trusted, then what?

e [f another discriminating observable exists (e.g. invariant mass)
— Train MVA without this observable

— Fit ‘invariant mass’ in bins of MVA observable
- Measures signal count independent of MVA prediction

— Exploits difference in purity across MVA prediction range
without relying on its predicted distribution
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Visualization of signal region splitting

e Split data in regions by BDT score, fit each region with inv. mass
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Visualization of signal region splitting

e Split data in regions by BDT score, fit each region with inv. mass

Joint PDF for
this model

j(nunBDT|S,§)=lookup(n

BDT)

// Construct template model

—

- J:,in0<m|S,Bo>=%fs<m>+Bm0f3<s>

f,,,-,,1<m|S,Bl>=%fs<m>+Bbm1f3<s>

f,,m2<m|S,Bz>=%fs<m>+ma2f3<s>

- 3(MISB)—f—f(M)+B,, 509

| (IS8, fS f.m)+ B, f,(5)

w.factory ("SUM::fit template (prod(Nsig[30,0,100],frac[1l])*sigl,

Nbkg[1000,0,10000] *bkgl) ") ;

// Construct joint model from template clones
w.factory ("SIMCLONE: : fitmodel (fit_template,
$SplitParam ({Nbkg, frac},bdtBin))") ;

f (m)+ B, _1,(s)
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—
—
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in each bin

(S/fbm—l)

sig

(S/ 15+ B

Sig

0.1 0.2 03

0.4

_|_




‘ex13 build binned.C’

The imperfect experiment

e \When relying on simulation templates to build models, a whole
world of problems awaits when considering that simulation
predictions have many systematic uncertainties associated with
them?
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Signal and background predictions
are affected by (systematic) uncertainties
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The simulation workflow and origin of uncertainties

Simulation of ‘soft physis’ Simulation of ATLAS LC data
physics ProgEss:.. kN :

&

Simulation of high—ener%
physics process (7]
N

Reconstruction
o of ATLAS detector
© [ e Data ATLAS
825——-Backgroundzz‘" 77 sal
g E.Background Z+jets, t w —
:%20—_ |:| Signal (m =125 GeV)

[ % Syst.Unc.
1505 =7 TeV:[Ldt = 4.8 fb"
[\s=8TeV:|Ldt=5.8fb"

)

Analysis Event selection
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Typical systematic uncertainties in HEP

e Detector-simulation related
— “The Jet Energy scale uncertainty is 5%”

— “The b-tagging efficiency uncertainty is 20% for jets with pr<40”

e Physics/Theory related
— The top cross-section uncertainty is 8%

— “Vary the factorization scale by a factor 0.5 and 2.0 and consider the
difference the systematic uncertainty”

— “Evaluate the effect of using Herwig and Pythia and consider the difference
the systematic uncertainty”

e MC simulation statistical uncertainty

— Effect of (bin-by-bin) statistical uncertainties in MC samples
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What can you do with systematic uncertainties

e As most of the typical systematic prescriptions have no immediately
apparent parametric formulation in your likelihood, common approach
IS ‘vary setting, rerun analysis, observe the difference’

e This common ‘naive’ approach to assess effect of systematic
uncertainties amounts to simple error propagation

e Error propagation procedure in a nutshell
— Make nominal measurement (using your favorite statistical inference procedure)

— Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1
sigma’ up and down ) Redo measurement procedure for each shift

— Consider propagated effect of shifted setting the systematic uncertainty

_ up down
U=, = Ostat + (lusyst - lusyst )/2 x...

From statistical Systematic uncertainty
analysis from error propagation

Wouter Verkerke, NIKHEF



Pros and cons of the ‘naive’ approach

* Pros

It’s easy to do

It results in a seemingly easy-to-interpret table of systematics

« Cons

Uncorrelated source of systematic uncertainty can have correlated effect on
measurement - Completely ignored

Magnitude of stated systematic uncertainty may be incompatible with
measurement result > Completely ignored

You lost the connection with fundamental statistical techniques

(i.e. evaluation of systematic uncertainties is completely detached from
statistical procedure used to estimate physics quantity of interest) > No
prescription to make confidence intervals, Bayesian posteriors etc in this way

No calibrated probabilistic statements possible (95% C.L.)

e ‘Profiling’ = Incorporate a description of systematic uncertainties
in the likelihood function that is used in statistical procedures

Wouter Verkerke, NIKHEF



Everything starts with the likelihood

- All fundamental statistical procedures are based on the likelihood
function as ‘description of the measurement’
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Everything starts with the likelihood

Frequentist statistics  Bayesian statistics Maximum Likelihood

- U .
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Introducing uncertainties — a non-systematic example

e The original model (with fixed b)

20.09

S =
5 C
5008

@0.07F

0.06

0.05F

0.041
0.03F
0.02F

0.015

e Now consider b to be uncertain
L(N|s) = L(N|s,b)

e The experimental data contains insufficient to constrain both

s and b =2 Need to add an additional measurement to constrain b
Wouter Verkerke, NIKHEF



‘exl]l build PoissonPoisson.C’

1(0.5)

The sideband measurement

Events

e Suppose your data o
in reality looks like this =» 0

III|III|III|III|III|I

Can estimate level of background in the ‘signal region’ from event
count in a ‘control region’ elsewhere in phase space

. NB: Define parameter ‘b’ to represents
LSR (Sa b) = POZSSO”(NSR |s+ b) the amount of bkg is the SR.
LCR (b) = POiSSO]/l(NCR | ‘E . b) Scale factor T accounts for difference

in size between SR and CR

“Background uncertainty constrained from the data”

e Full likelihood of the measurement (‘simultaneous fit’)

L, (s,b) = Poisson(N g | s+b)- Poisson(N 1T b)



Generalizing the concept of the sideband measurement

e Background uncertainty from sideband clearly clearly not a
‘systematic uncertainty’

L, (s,b) = Poisson(N g, | s+b)- Poisson(N, 1T b)
e Now consider scenario where b is not measured from a sideband,

but is taken from MC simulation with an 8% cross-section
‘systematic’ uncertainty

‘Measured background rate by MC simulation’

L, (s,b)= Poisson(Ng | s +b) - Gauss b1b,0.08)

i
‘Subsidiary measurement’
of background rate

— We can modéel this in the same way, because the cross-section uncertainty is
also (ultimately) the result of a measurement

Generalize: ‘sideband’ - ‘subsidiary measurement’

Wouter Verkerke, NIKHEF



What is a systematic uncertainty”?

e (Concept & definitions of ‘systematic uncertainties’ originates from
physics, not from fundamental statistical methodology.

— E.g. Glen Cowans (excellent) 198pp book “statistical data analysis”
does not discuss systematic uncertainties at all

e A common definition is

— “Systematic uncertainties are all uncertainties that are
not directly due to the statistics of the data”

e But the notion of ‘the data’ is a key source of ambiguity:
— does it include control measurements?

— does it include measurements that were used to perform basic
(energy scale) calibrations?

Wouter Verkerke, NIKHEF



Detector-simulation related
— “The Jet Energy scale uncertainty is 5%”

— “The b-tagging efficiency uncertainty is 20%
for jets with pr<40”

Physics/Theory related

— The top cross-section uncertainty is 8%

— “Vary the factorization scale by a factor 0.5
and 2.0 and consider the difference
the systematic uncertainty”

— “Evaluate the effect of using

Herwig and Pythia and consider the difference
the systematic uncertainty”

MC simulation statistical uncertainty

— Effect of (bin-by-bin) statistical uncertainties
in MC samples

Typical systematic uncertainties in HEP

Subsidiary measurement

Is an actual measurement

- conceptually similar to
a ‘sideband’ fit

Subsidiary measurement
unclear, but origin of
prescription may well

be another measurement
(if yes, like sideband, if

no, what is source of info?)

Subsidiary measurement

is a Poisson counting
experiment (but now in

MC events), otherwise
conceptually identical to

a ‘sidebana-fitdr Verkerke, NIKHER



Typical systematic uncertainties in HEP

e Detector-simulation related

— “The Jet Energy scale uncertainty is 5%”

“Thao h_-tanninn affiriconmyv 1incartaintyy ic 2N0/

Subsidiary measurement
is an actual measurement
—> conceptually to

Almost all systematic uncertainties are similar in nature
to ‘sidebands’ measurements of some form or shape

- Can always model systematics like sidebands

in the Likelihood

And even when the are not the (in)direct result of
some measurement (certainty theory uncertainties)

we can still model them in that form

U simulation statistical uncertainty

Effect of (bin-by-bin) statistical uncertainties
in MC samples

Subsidiary measurement

is a Poisson counting
experiment (but now in

MC events), otherwise
conceptually identical to

a ‘sidebana-fitir Verkerke, NIKHER



Modeling a detector calibration uncertainty
L, (s,b)=Poisson(Ng | s+b)- Gauss(l; 1 5,0.08)

e Now consider a detector uncertainty, e.g. jet energy scal
calibration, which can affect the analysis acceptance in a non-trivial

way (unlike the cross-section example) | o
Nominal calibration

Signal rate (our parameter of interest) \Assumed calibration

N

L(N,als,a)= Poisson(N |s + b(a! &) 2)))- Gauss(& | OC,O'%)’

i |/ \
Observed event count Uncertainty

on nominal
calibration

Nominal Ibackground Response function (here 5%)
expectation from MC :
. for JES uncertainty
(a constant), obtained o
h . (@ 1% JES change
with a=4 results in a 2% “Subsidiary measurement”

acceptance change)  Encodes ‘external knowledge’
on JES calibration




Modeling a detector calibration uncertainty

7

e Simplify expression by renormalizing “subsidiary measurement

Signal rate (our parameter of interest)

\

L(N | s,a) = Poisson(N | s + b(1+0.1a)) Gauss(0 | a,1)

Observed event count / \
“Normalized

, subsidiary measurement”
Nominal background  Response function

expectation from MC  for normalized JES The scale of parameter
(a constant) parameter a is now chosen such that
[a unit change in a values +1 corresponds to the
-as5% JESchange - nominal uncertainty
still results ina 10% (in this example 5%)

acceptance change]

Wouter Verkerke, NIKHEF



The response function as empirical model of full simulation

L(N,0ls,a)= Poisson(N |s+b(a)) Gauss(0la,l)
—

e Note that the response function is generally not linear, but can in
principle always be determined by your full simulation chain

— But you cannot run your full simulation chain for any arbitrary ‘systematic
uncertainty variation’ = Too much time consuming

— Typically, run full MC chain for nominal and +10 variation of systematic
uncertainty, and approximate response for other values of NP with interpolation

— For example run at nominal JES and with JES shifted up and down by +5%

o) Empirical approximation 1.1
of true response

Full MC result for JES at +5%
1.0

Full MC result for JES at
0.9

Wouter Verkerke, NIKHEF



What is a systematic uncertainty?

e |tis an uncertainty in the Likelihood of your physics measurement
that is characterized deterministically, up to a set of parameters,
of which the true value is unknown.

o A fully specified systematic uncertainty defines

— 1. A set of one or more parameters
of which the true value is unknown,

— 2: Aresponse model that describes the effect of those
parameters on the measurement
(sampled from full simulation, and interpolation)

— 3: A subsidiary measurement of the parameters
that constrains the values the parameters can take
(implies a specific distribution: Gaussian (default, CLT),
Poisson (low-stats counting), or otherwise)

Wouter Verkerke, NIKHEF



Names and conventions — ‘profiling’ & ‘constraints’

e The full likelihood function of the form

L(N,0ls,a)= Poisson(N |s+b(a)) Gauss(0la,l)

is usually referred to by physicists as a ‘profile likelihood’, and
systematics are said to be ‘profiled’” when incorporated this way

— Note: statisticians use the word profiling for something else

e Physicists often refer to the subsidiary measurement as a
‘constraint term’

— This is correct in the sense that it constrains the parameter a, but this labeling
commonly lead to mistaken statements (e.g. that it is a pdf for Q)

— Butitis not a pdf in the NP

Gauss$ 10,1) Gauss(0l o, 1)

Wouter Verkerke, NIKHEF



Names and conventions

e The ‘subsidiary measurement’ as simplified form of the ‘full
calibration measurement’ also illustrates another important point
— The full likelihood is simply a joint likelihood of a physics measurement and a

calibration measurement where both terms are treated on equal footing in the
statistical procedure

— In a perfect world, not bound by technical modelling constraints
you would use this likelihood

L(N,y1s,a) = Poisson(N | s+ b(1+0.1a))- L, (¥ ., 8)

where L g is the full calibration measurement as performed by the Jet
calibration group, based on a dataset y, and which may have other
parameters 6 specific to the calibration measurement.

e Since we are bound by technical constrains, we substitute L g
with simplified (Gaussian) form, but the statistical treatment and
interpretation remains the same

Wouter Verkerke, NIKHEF



Gamma and logNormal distributions

Gamma distribution logNormal distribution
=distribution of p resulting from

a Poisson measurement L(N|u)

9 1 1 —(log x — /l,)?)
1 a—1 —2 Ty, 0°) = — exp =
fia ) = pos et Ham o) = s g ™ ( 27
Elz] = exp(p + %0'2)
Elz] = af
Viz] =
V[z] = ap® exp(2p + o) [exp(a?) — 1]
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MC statistical uncertainties as systematic uncertainty

¢ Another example of modeling a systematic uncertainty:
MC statistical uncertainty

e [ollow same procedure again as before:

— Define response function (this is trivial for MC statistics:
it is the luminosity ratio of the MC sample and the data sample)

— Define distribution for the ‘subsidiary measurement’ — This is a Poisson
distribution — since MC simulation is also a Poisson process

— Construct full likelihood (‘profile likelihood’)

L(N,N,,-|s,b)=Poisson(N |s+b)- Poisson(N,,. | t-b)

Constant factor T = L(MC)/L(data)
e Note uncanny similarity to full likelihood of a sidelbband measurement!

L(N,N_, |s,b)= Poisson(N | s+ b)- Poisson(N_, | T - b)

ctl

Wouter Verkerke, NIKHEF



Modeling multiple systematic uncertainties

¢ |ntroduction of multiple systematic uncertainties presents no
special issues

e Example JES uncertainty plus generator ISR uncertainty

L(N,0ls,a,,0,0)=P(Nls+b(1+0.1a,,+0.05¢a,,)) GOl o,.,1) GO o, 1)

I I I

Joint response function

, One subsidiary
for both systematics

measurement for each
source of uncertainty
e A brief note on correlations

— Word “correlations” often used sloppily — proper way is to think of correlations
of parameter estimators. Likelihood defines parameters A gs, Qigr.

The (ML) estimates of these are denoted 4,4,

— The ML estimators of @,x,%4: using the Likelihood of the subsidiary
measurements are uncorrelated (since the product factorize in this example)

— The ML estimators of &0 using the full Likelihood may be correlated.
This is due to physics modeling effects encoded in the joint response function

Wouter Verkerke, NIKHEF



Modeling systematic uncertainties in multiple channels

e Systematic effects that affect multiple measurements should be
modeled coherently.

— Example - Likelihood of two Poisson counting measurements

L(N Ny 15,0,55) = PN, s+ f +B,(1+0.1at,5)) P(Ny L+ fy + by (1-0.301,))- GO 0t5.1)
| | T

)

JES response JES response JES
function for function for  subsidiary
channel A channel B measurement

— Effect of changing JES parameter a g5 coherently affects both measurement.

— Magnitude and sign effect does not need to be same, this is dictated by the
physics of the measurement

Wouter Verkerke, NIKHEF



Introducing response functions for shape uncertainties

¢ Modeling of systematic uncertainties in Likelihoods describing
distributions follows the same procedure as for counting models
— Example: Likelihood modeling

distribution in a di-lepton invariant
mass. POl is the signal strength p

)

n
[=]

Events /(0.5

o
o

80

LGy, | ) = | [[ - Gauss(m),91,1)+ (1 - ) Uniform(m)] -
40:

20

v e b L L b L b e Ly
%0 82 84 86 88 90 92 94 96 98 100
X

e (Consider a lepton energy scale
systematic uncertainty that affects this measurement

— The LES has been measured with a 1% precision
— The effect of LES on m; has been determined to a 2% shift for 1% LES change
LGy, | o0, p) = | [ - Gauss(mi,91- (1+2¢1,55,1) + (1 - ) - Uniform(m) |- Gauss(0 | ¢, 1)
i \_'_' (| . J

Response function Subsidiary measurement
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120—

Response modeling for distributions

Events/(0.5)

e [or a change in the rate, response
modeling of histogram-shaped
distribution is straightforward:
simply scale entire distribution

ok

“..||...|.|.|...|..":|...|...|.|....|..
%o 82 84 86 88 90 92 94 96 98 100
X

L(N | u)= HPOisson(Ni | us; + l;l.)

L(1\7 lu,a) = H Poisson(N, lus;-(1+3.75a) + l;,-) -Gauss(0la,1)

Response function Subsidiary
for signal rate measurement

e But what about a systematic uncertainty that shifts the mean,
or affects the distribution in another way”?

Wouter Verkerke, NIKHEF



Modeling of shape systematics in the likelihood

e [Effect of any systematic uncertainty that affects the shape of a
distribution can in principle be obtained from MC simulation chain

— Obtain histogram templates for distributions at ‘+10’ and ‘-1¢’
settings of systematic effect

1 ) 1 H )
-10 nominal
g E=] 2
00 Boor- s [
g’ B S I oD |
<[ §r Aook-
: S ol 5T
§80 &80 5 r
Q [ [« % [~ ’6 [
o r - QL- -
60— 60— L
i i sof-
40— 40— L
L L 40
20— 20_— 20—
_|||||||||||||||||||||| L b b by _|||I|||I|||I||: L liaalag [ RN N _||||||| pa il [E S W R N
%0 82 64 86 86 90 92 94 96 98 100 80 82 64 86 88 90 92 94 96 98 100 QG 82 84 86 88 90 92 94 96 98 100
X X X

e (Challenge: construct an empirical response function based on
the interpolation of the shapes of these three templates.
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Need to interpolate between template models

e Need to define ‘morphing’ algorithnm to define
distribution s(x) for each value of a S(X) | ge 1

Projection of hsig_min
[o3 o
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o
LI L
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Foo— i
5 |
c L
2 L 20—
Q
%‘80—
o T i
r b b b b b L —
r 0 82 84 86 88 90 92 94 96 98 S(X/G_+1)
60— X
S(X)|a=-1 :
40—
P L
oo i
2 L
Aool— 20—
"5 L -
c -
S
2t L
2801 0“812“‘814“|8I6“I88IH9|0I”9|2”94I“9I8“I918“‘ ( _O)
| / X S XIG_
60—
40
20—
FETETIRTE T NEa

R T S(X,G='1)
X
Wouter Verkerke, NIKHEF



Projection of hsig_min

Piecewise linear interpolation

e Simplest solution is piece-wise linear interpolation for each bin
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Projection of hsig_plus
@ =)
3 3
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_build binned morphing.C’
Visualization of bin-by-bin linear interpolation of distribution
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There are other morphing algorithms to choose from

Gaussian

varying
width

Gaussian

varying
mean

Gaussian
to

Uniform
(this is
conceptually ambigous!)

Nn-dimensional
morphing?

Vertical
Morphing

AR L B i L LA L AL o

s

Horizontal

Morphing

fesf

S0

)
e

Moment
Morphing

5 B
AL L L LA AL AR S L

.....

Wouter Verkerke, NIKHEF, 163
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Shape, rate or no systematic”?

e Be judicious with modeling of systematic with little or no significant
change in shape (w.r.t MC template statistics)

— Example morphing of a very subtle change in the background model

— Is this a meaningful new degree of freedom in the likelihood model?

N

o
ol

o kyegts / (0.325 x0,1)
Do aivB D

=~

— A X2 or KS test between
nominal and alternate
template can help to decide M
if a shape uncertainty is meaningul

©
o

| m ....__,.Iﬁjj:??ﬁﬁﬁﬁijjjﬁij:
,_ '||||\I\I|l! ' n||||||||| {
| il
Ul
— Most systematic uncertainties T s "
affect both rate and shape, but can make
independent decision on modeling rate (which less likely to affect fit stability)

Wouter Verkerke, NIKHEF



Fit stability due to insignificant shape systematics

e Shape of profile likelihood in NP a clearly raises two points

T 400F
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9 —
5 300
2 C
"5 —
& 2501
= F

il
| an

c -
S 200

"'
I I || 9
0
8 o8

a 150
100F
501
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alpha

e 1) Numerical minimization process will be ‘interesting’

e 2) MC statistical effects induce strongly defined minima that are fake

— Because for this example all three templates were sampled from the same parent
distribution (a uniform distribution)
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Recap on shape systematics & template morphing

e |mplementation of shape systematic in
likelihoods modeling distributions conceptually
no different that rate systematics in counting T +
experiments i IO e 0 |

[T T T T

LGy, |, 5) = [ [[ - Gauss(mi,91- (1+201,5,1) + (1= ) - Uniform(m}") | Gauss(0 1, 5,1)

e For template modes obtained from MC simulation template
provides a technical solution to implement response function

— Simplest strategy piecewise linear interpolation,
but only works well for small changes

Exents (4 0325 x8.03)
© 80N ®o

— Moment morphing better adapted to modellng
of shifting distributions

— Both algorithms extend to n-dimensional
interpolation to model multiple systematic NPs
in response function

— Be judicious in modeling ‘weak’ systematics: -
MC systematic uncertainties will dominate likelihood Wouter Verkerke, NIKHE-



Putting it all together — a calibration uncertainty in a counting experiment
Exal I I p | e .1 ' CO U ntl n g expt e Simplify expression by renormalizing “subsidiary measurement”

Signal rate (our parameter of interest)

e \Will now demonstrate how to L(N I5.00) = Poisson(N |5 +b(1+0.10)- Gauss(0 | . 1)
construct a model for a
counting experiment with Ty Tenelrol  Encades ederna inowkdos

(a constant) parameter controls JES calibration
[a unit change in a

' '
a Systel I Iat | C u n Ce rtal nty -a5% JES change - The scale of parameter
still results in a 10% ais now chosen such that
acceptance change] values +1 corresponds to the
nominal uncertainty
(in this example 5%)
Wouter Verkerke, NIKHEF

L(N |s,a) = Poisson(N | s + b(1+0.1a))- Gauss(0 1 o, 1)

// Subsidiary measurement of alpha
w.faxtory (“Gaussian: :subs(0,alpha[-5,5],1)") ;

// Response function mu (alpha)
w.factory (Vexpr: :mu('‘s+b(1+0.1*alpha)’ ,s[20] ,b[20] ,alpha)”) ;

// Malin measurement
w.factory (“Poisson: :p(N[0,10000] ,mu)”) ;

// Complete model Physics*Subsidiary
w.factory (“"PROD: :model (p,subs) ”) ;



Example 2: unbinned L with syst.

e \Will now demonstrate how to
code complete example of
the unbinned profile likelihood
of Section b:

Introducing shape systematic uncertainties

* Modeling of systematic uncertainties in Likelihood describing
distributions follows the same procedure as for counting models
— Example: Likelihood modeling

distribution in a di-lepton invariant
mass. POl is the signal strength

o
Lqm‘,|.u)-]'[[,u-Guu.\s(n,;,”.s:l.lml-;:)-Unnbnmmj“”)] of

T T S 8
e Consider a lepton energy scale '
systematic uncertainty that affects this measurement

— The LES has been measured with a 1% precision
— The effect of LES on m, has been determined to a 2% shift for 1% LES change

Ly, | u,a, ) = H[,u-Guuss(mj,”.‘)l (1420, D) +(1-w)- Uniform(m‘,,”)]~G(m.\'s(0 la,,1)
i — -—

Response function Subsidiary measurement

L(y, | w,0,p) = | [[ - Gaussm;,91- (1 +2,),1) + (1= ) - Uniform(my) |- Gauss(0 | a5, 1)
i |

// Subsidiary measurement of alpha

w.factory (“Gaussian: :subs(0,alpha[-5,5],1)");

// Response function m(alpha)

w.factory(Yexpr::m a(“m*(1+2alpha)”,m[91,80,100] ,alpha)”) ;

// Signal model

w.factory(“Gaussian::sig(x[80,100] ,m a,s[1])")

// Complete model Physics (signal plus background) *Subsidiary
w.factory ("PROD: :model (SUM(mu[0,1] *sig,Uniform: :bkg(x)) ,subs)”) ;




Example 3 : binned L with syst

e Example of template morphing
systematic in a binned likelihood

s!+a-(sf=s)) Va>0
s(a,...)= . .
s;+a-(s; -s;) Va<0

i
|5 ¥ o
o =
. :
by a3 "
fr i et
o Boo-
H
}

Visualization of bin-by-bin linear interpolation of distribution

L(Nla,5,5°,5) = HP(NZ. Is.(a,57,5°,57)) GOl at,1)

bins v v

// Import template histograms in workspace
w.import(hs _O,hs p,hs m) ;

// Construct template models from histograms
w.factory (“HistFunc::s 0(x[80,100] ,hs 0)”) ;
w.factory(“HistFunc::s:p(x,hs_p)”) ; -
w.factory (“"HistFunc::s m(x,hs m)”) ;

// Construct morphing model

w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])") ;

// Construct full model

w.factory (“PROD: :model (ASUM(sig,bkg,£f[0,1]) ,Gaussian(0,alpha,l))”) ;




Other uncertainties in MC shapes — finite MC statistics

e |n practice, MC distributions used for template fits have finite
statistics.

o
o
T

o]
(=]

rojection of hsig

\
o
=)
L T T T

"
S 1201—
by 40
2 100— -
r 20
80— i
60 NI PN T P PR R A alag
C %O 82 84 86 88 4 96 98 100
40— X
20
g b e A ! 4
P IR B A B I B L

%o 82 84 86 88 90 92 94 96 98 100
X

e |imited MC statistics represent an uncertainty on your model
- how to model this effect in the Likelihood?

Wouter Verkerke, NIKHEF



Other uncertainties in MC shapes — finite MC statistics

e Modeling MC uncertainties: each MC bin has a Poisson uncertainty
e Thus, apply usual ‘systematics modeling’ prescription.

e F[or a single bin — exactly like original counting measurement
Fixed signal, bkg MC prediction

SO

L,. .(u)=Poisson(N,|u-5,+b,)

Signal, bkg
MC nuis?ciparams

L, .(u,s;,b)=Poisson(N,|u-s, +b,)

. MC-
- Poisson(N," " | s,)
. MC-b
/ . POlSSO]’l(Ni | bz)
Subsidiary measurement for signal MC

(‘measures’ MC prediction s; with Poisson uncertainty)

©
o

< Project®n of model
(=]
@

3

0.04

0.02




Nuisance parameters for template statistics

[
o

Repeat for all bins

Project®n of model
(=]
(o]

E

0.02

0.04

LN 1w = [ [P(N, 15, +b,)

bins

Binned likelihood
with rigid template

LN 1u,5,b) = [ PN, lu-s, +b)] [ PG 1s)] [ P51

bins

Response function
w.r.t. s, b as parameters

bins bins
[ 1
I
2X Npins SUbsidiary
measurements
of s ,b from s~,b~

Result: accurate model for MC statistical uncertainty, but lots of
nuisance parameters (#samples x #bins)...



The effect of template statistics

e \When is it important to model the effect of template
statistics in the likelihood

— Roughly speaking the effect of template statistics becomes
important when Nigmo< 10X Ngaia (from Beeston & Barlow)

e Measurement of effect of template statistics in
previously shown toy likelihood model, where L
POl is the signal yield

Omodetz (1g) / Omoget (1) Npc=10Ngata ‘model 1 — plain template likelihood’

(10 bins, o(signal) = 4, #runs = 2000)

‘model 2 — Beeston-Barlow likelihood’

0modelz (Ms) / 0model1 (Ms)

"'D‘ (10 bins, o(signal) = 4, #runs = 2000)
fo! 4.5 10 30
g— ] o “ Note that even at
& 4 e * Nyc=1 QNdata
@) 10 5! uncertainty on POI
-?—,o 35 ¥ can be underestimated
5 e -4~y 10% without BB

7 2 . K * ,//

25 o N mﬂ’?‘/
2 25 3 3.5 4 45 1 3 XX M_2 '\(' 6 : 5 3 -
log. (data samples/MC samples) ke, 174
Nyic=Ngata Iogm(data samples) i



Reducing the number NPs — Beeston-Barlow ‘lite’

e Another approach that is being used is called ‘BB’ — lite

¢ Premise: effect of statistical fluctuations on sum of templates is
dominant = Use one NP per bin instead of one NP per

component per bin

‘Beeston-Barlow’

L(N15.b) = [P(N, 15, +b)[ [ PG, 1) [ P, 1)

bins bins bins
‘Beeston-Barlow lite ’

LN i) =[ [PV, 1n)] [ PG, +6,1n)

bins bins

el
°
-

Projectgn of mod
[+

o
3
T T T T

Response function ~ Subsidiary measurements

[ w.r.t. n as parameters ~ of n from s~+b~
0.04

Lot el LINIP) =[[POV1y,G B[ [PG,+5,17,6,+5)

ol b b b by bywn bona Lo Lo L bins bins
0 - - K

* Normalized NP lite model (hominal value of all y is 1)




The interplay between shape systematics and MC systematics

e Best practice for template morphing models is to also include effect
of MC systematics

e Note that that for every ‘morphing systematic’ there is an set of two
templates that have their own (independent) MC statistical
uncertainties.

— A completely accurate should model MC stat uncertainties of all templates

s!+a-(sf=s)) Va>0
s(a,...)= . .
T s;+a-(s;—s;) Va<0

LN 1a,57,5°,5) = | [PV s, s D] [ PG )] [ PG IsH] [ PG 1s?)
bins bins bins bins

Morphing response function Subsidiary measurements

e But has severe practical problems

— Can only be done in ‘full’ Beeston-Barlow model, not in ‘lite’ mode, enormous
number of NP models with only a handful of shape systematics...

Wouter Verkerke, NIKHEF



The interplay between shape systematics and MC systematics

¢ Commonly chosen Lra(s -s") Ya>0
practical solution sa,..)=1 o
T s;+a-(s;, —s;) Va<O0
LINI5,b) =] [ PN, 1y, [s(ct,s7,57,5))+ b D] | PG, +5, 17, [5,+BDG(O 1t 1)
bins \ T I pins T J
Morphing & MC response function Subsidiary measurements

Models relative MC rate uncertainty for each bin w.r.t the nominal
MC yield, even if morphed total yield is slightly different

Foo:
S r
Bort

0.06f

N without BB-L

0,052 y ‘
| (I
| i

0.02F

0.01F CE B SO 4 PR L T S S H

E s g ST I ST I I I B
10 2 o g 08 06 04 02 0 02 04
x alpha

e Approximate MC template statistics already significantly improves
influence of MC fluctuations on template morphing

, . . , ) , , Wouter Verkerke, NIKHEF
— Because ML fit can now ‘reweight’ contributions of each bin



Pruning complexity — MC statistical for selected bins

e (Can also make decision to model MC statistical uncertainty on a
bin-by-bin basis

— No modeling for high statistics bins

— Explicit modeling for low-statistics bins

—_
n
(=]

Events/(0.5)

—_
o
(=]

80
60
40

20

—od'3’|I

L(NI7)=HP(Nini(§i+5i)) H PG +b.1y,5 +b)) 1_[ 5y,

bins low-stats bins hi-stats bins

Wouter Verkerke, NIKHEF



Adapting binning to event density

o [ffect of template statistics can also be controlled by rebinning
data such all bins contain expected and observed events

— For example choose binning such that expected background has a uniform
distribution (as signals are usually small and/or uncertain they matter less)

|||||||||||||||||||||||||||||||||||||||||||||||||

160
140
120

140~ —
C 100

:lllllllllll|lll‘{_

Illlllllllll'll]i'

120 =

Events / 0.33 arbitrary

100 -

Events / 10 GeV

.

e
1.4 ]

i . . S
08;— .................... + ....................................................................................................................... _;
B =

0 01 0203040506070809 1
Mapped m_ [arbitrary]

[o)
[0]
=
Data / SM
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Example 4 — Beeston-Barlow light

e Beeston-Barlow-(lite) modeling
of MC statistical uncertainties

L(N 1})= 1_[ PN, 1y.(5. + Bi))]_[ PG, +b.1y,5 +b))
bins bins

// Import template histogram in workspace

w.import (hs) ;

Reducing the number NPs — Beeston-Barlow ‘lite’

* Another approach that is being used is called ‘BB’ - lite

e Premise; effect of statistical fluctuations on sum of templates is
dominant = Use one NP per bin instead of one NP per
component per bin

‘Beeston-Barlow’

L(N15,b)= HP(N, Is, +b,)HP(§, |s,)HP(1§, Ib)
bins bins bins

‘Beeston-Barlow e

LN i) = [PV 1) [ PG, +B,1n)
bins bins

Response function  Subsidiary measurements
w.r.t. n as parameters  of n from s~+b~

L(N17)= n P(N, 1y,(5,+b, ))n PG, +b,17,5,+b,)
bins bins

Normalized NP lite model (nominal value of all y is 1)

// Construct parametric template models from histograms
// implicitly creates vector of gamma parameters

w.factory (“ParamHistFunc: :s (hs)”) ;

// Product of subsidiary measurement
w.factory (“HistConstraint: :subs(s)”) ;

// Construct full model
w.factory ("PROD: :model (s,subs)”) ;

Wouter Verkerke, NIKHEF




Example 5 — BB-lite + morphing

e Template morphing model

with Beeston-Barlow-lite
MC statistical uncertainties

s!+a(sf=s)) Va>0

0
S.

+a-(s) -s7) Ya<0

The interplay between shape systematics and MC systematics

T()[

LIN13,b)=[ [PON, 1y, [s,(a.57,50 5D + B D] [ PG +B,17,[5,+ BDGO 1 1)
bins L T S bins & T /

e  Commonly chosen

i ( si+a(si-s)) Ya>0
practical solution

0 0 =
s;+a(s)-s7) Va<0

Morphing & MC response function Subsidiary measurements

Models relative MC rate uncertainty for each bin w.r.t the nominal
MC yield, even if morphed total yield is slightly different
{

I
yﬂf;ﬁi]H

e Approximate MC template statistics already significantly improves
influence of MC fluctuations on template morphing =

— Because ML fit can now ‘reweight’ contributions of each bin

LNIS,b) =] [PV, 1y, [s (7,80, 8; )+b D[]

bins bms

PG, +b.1y,-[5.+b1)G(Ola,1)

// Import template histograms in workspace
w.import (hs O,hs p,hs m,hb) ;

// Construct parametric template morphing

factory (“ParamHistFunc::s p(hs_p)”) ;
s m(x,hs m)”) ;

w.
w.factory (“HistFunc: :
w.factory (“HistFunc:

w.factory (“"PiecewiselInterpolation:

// Construct parametric background model
w.factory (“ParamHistFunc: :bkg(hb,s p)”)

:s_0(x[80,100] ,hs_0)")
:sig(s_0,s_,

signal model

’

m,s p,alpha[-5,5])")

(sharing gamma’s with s p)

// Construct full model with BB-lite MC stats modeling
w.factory (“"PROD: :model (ASUM(sig,bkg,£[0,1]),
HistConstraint({s_0,bkg}) ,Gaussian(0,alpha,l))”) ;




