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methods 3b 
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Expected results, upper limits 
and asymptotic formulae



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods



Physics or statistics?

• An important and recurring dilemma facing analyzers is what to do 
with inference results of a statistical model that cover unphysical 
regions in the parameter space of the underlying theory

• Simplest example: Poisson counting experiment P(N|S+B)
– Expect 5 background events, and 3 signal event

– We observe 4 events – What result will we report? What conclusion will we draw?

• The data tells us precisely this : Likelihood L(s)=Poisson (4|S+5)
• Estimation procedures report:

• Only S>0 is physical,
what do we report?

– Option A) Report as is?

– Option B) Try to exclude unphysical regions from result
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ML parameter estimate à S= -1
ML variance estimate    à √V(S) = 1.83
MINOS Conf. Interval    à [-1.68,2.34] 68% C.L.

t(s) = −logΛ(s) = −log L(S)
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Physics or statistics?

• Q: Only S>0 is physical, what do we report?
– Option A) Report as is?
– Option B) Try to exclude unphysical regions from result?

• A: Depends on your goal!
• Goal 1: reporting, as accurately as possible, result of experiment

– Observed result is not peculiar: 
44% of experiments of hypothesis S=0 with B=5 result in Nobs<5
10% of experiments of hypothesis S=3 with B=5 result in Nobs<5

– Problem arises only in interpretation of N in terms of S+B à defer interpretation
– Report S, V(S), or confidence on S as usual (as proxy for the full likelihood)
– Downside: interpretation deferred 
– Upside: easy to combine results of multiple experiments reported in this form

(combination = inference on product of likelihoods
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Physics or statistics?

• Q: Only S>0 is physical, what do we report?
– Option A) Report as is?

– Option B) Try to exclude unphysical regions from result?

• A: Depends on your goal!
• Goal 2: make physics interpretation of your model

– Confidence interval should in that case not cover unphysical values

– But you cannot simply exclude unphysical region without spoiling 
coverage properties (=calibration of 68%/95% promise)  
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Physics or statistics?

• Goal 2: make physics interpretation of your model
– Confidence interval should in that case not cover unphysical values

– But you cannot simply exclude unphysical region without spoiling 
coverage properties (=calibration of 68%/95% promise)

– But you are allowed to modify the test statistic (=observed quantity) 
so that confidence belt never enters the unphysical region

• Can we modify test statistic such that boundaries are obeyed? 
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Physical boundaries frequentist confidence intervals

• Solution is to modify the statistic
to avoid unphysical region
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tµ (x) = − 2 log L(x |µ)
L(x | µ̂)

!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
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Introduce 
“physical bound”
μ>0

If μ<0, use 0 in denominator
à Declare data maximally 

compatible with hypothesis μ=0 

μ=-1 μ=1 μ=2

μ=-1 μ=1 μ=2



Physical boundaries in frequentist confidence intervals

• What is effect on distribution
of test statistic?
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If μ<0, use 0 in denominator
à Declare data maximally 

compatible with hypothesis μ=0 

Distribution of t0 for μ=2

Distribution of t0 for μ=0~

Spike at zero contains all
“unphysical” observations

~

Unmodified….

Introduce 
“physical bound”
μ>0

tµ (x) = − 2 log L(x |µ)
L(x | µ̂)



Physical boundaries frequentist confidence intervals

• What is effect on acceptance interval
of test statistic?
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If μ<0, use 0 in denominator
à Declare data maximally 

compatible with hypothesis μ=0 

Effect: Acceptance 
interval is shortened

Introduce 
“physical bound”
μ>0

tµ (x) = − 2 log L(x |µ)
L(x | µ̂)

Distribution of t0 for μ=0

Spike at zero contains all
“unphysical” observations

~

Unmodified….



Physical boundaries frequentist confidence intervals

• Putting everything together – the confidence with modified tμ
• Confidence belt ‘pinches’ towards physical boundary
• Offsetting of likelihood curves for measurements that prefer μ<0  

tμ(x,μ)

ß Large μ 
2-sided interval in μ
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Physical boundaries frequentist confidence intervals

• Putting everything together – the confidence with modified tμ
• Confidence belt ‘pinches’ towards physical boundary
• Offsetting of likelihood curves for measurements that prefer μ<0  
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ß Small μ>0
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Physical boundaries frequentist confidence intervals

• Putting everything together – the confidence with modified tμ
• Confidence belt ‘pinches’ towards physical boundary
• Offsetting of likelihood curves for measurements that prefer μ<0  

tμ(x,μ)

μ<0 à
‘upper limit’ interval
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Physical boundaries frequentist confidence intervals

• Example for unconstrained unit Gaussian measurement
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L =Gauss(x |µ,1)
tμ(x,μ)
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Physical boundaries frequentist confidence intervals

• First map back horizontal axis of confidence belt from tμ(x)àx

tμ(x,μ)
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“Feldman-Cousins”



Comparison of Bayesian and Frequentist limit treatment

• Bayesian 95% credible upper-limit interval with flat prior μ>0 
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Recap on test statistics

• The ‘default’ frequentist test statistic 
is the likelihood ratio tμ

– Confident belt (tμ vs μ) is asymptotically a box
– Observed value tμ depends on μ
– Confidence intervals as reported by MINOS
– No notion of boundaries in parameters

• The ‘modified’ frequentist test statistics
is likelihood ration tμ

– Confident belt will pinch near boundary in μ
– Observed value tμ identical to tμ in the

physical region
– Reported interval will by construction be

contained in the physical region
– Built-in procedure that changes from 2-sided

to 1-sided interval with increasing signal yield
– Best known as ‘Feldman-Cousins’ 
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The order of things

• The goal of the ‘ordering’ is to sort potential observations by 
signal extremity. Let’s reexamine discovery counting experiment

• For a Poisson counting distribution this is was trivial 
– Larger observed event count à more extreme

• A Likelihood-Ratio test statistic generalizes this concept to 
measurement of any type, but note that it quantifies the
(incompatibility) of the data with a fixed hypothesis

Wouter Verkerke, NIKHEF

p0 = Poisson(i | S + B)
i=Nobs

∞

∑ = 0.156

Example: B=20, Nobs=25

Example: B=20, Nobs=25

tµ = −2log
Poisson(N | S + 20)
Poisson(N | Ŝ + 20)
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χ 2
(tµ )dtµ = 0.28

tµ
obs
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∫

Poisson 
distribution

Χ2 (n=1)
distribution



The order of things

• Why do we get a different answer?
• Because in the Likelihood Ratio test for discovery we 

order observations by compatibility with the hypothesis B=20

Wouter Verkerke, NIKHEF

For upward fluctuations

Compatible 
with B=20

Incompatible
with B=20



The order of things

• Why do we get a different answer?
• Because in the Likelihood Ratio test for discovery we 

order observations by compatibility with the hypothesis B=20
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For upward fluctuations

But also for downward fluctuations!

This is clearly not what we intended for 

a discovery test!

LR test measures consistency with 

boundary of a confidence interval

à but inside boundary has different 

meaning than outside boundary…

Compatible 
with B=20

Incompatible
with B=20



Formulating a test statistic for discovery

• We can formulate a new test statistic q0
which all negative fluctuations are 
considered to be maximally compatible 
with the background
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q0 (x) =
−2log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

0 ∀µ̂ < 0
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Compatible 
with B=20

δ-function 
at q0=0

Example: B=20, Nobs=25

tµ = −2log
Poisson(N | S + 20)
Poisson(N | Ŝ + 20)
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1
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tµ
obs
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tµ
obs
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∫

F(q0) = ½δ(q0)+½Χ2(q0,1)

Now very close to Poisson result (0.156)
(remaining difference due to discreteness of Poisson distribution)

Asymptotically half of fluctuations around
null hypothesis are negative
(for small N, actual distribution may deviate from asymptotic)



Formulating a test statistic for discovery

• We can formulate a new test statistic q0
which all negative fluctuations are 
considered to be maximally compatible 
with the background
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Example: B=20, Nobs=25
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tµ
obs
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∫

F(q0) = ½δ(q0)+½Χ2(q0,1)

Now very close to Poisson result (0.156)
(remaining difference due to discreteness of Poisson distribution)

Asymptotically half of fluctuations around
null hypothesis are negative
(for small N, actual distribution may deviate from asymptotic)

Note that q0 is in fact not a new test statistic, but rather
a special case of the Feldman-Cousins test statistic tμ!
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But wait… there is more

• A similar problem of dilution of sensitivity applies when considering 
results in the form of upper limits

Wouter Verkerke, NIKHEF

Discovery
p(μ=0) = …

Measurement
μlow<μ<μhigh (68% C.L.)

Exclusion limit
μ<X (95% C.L.)

q0 (x) =
−2log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

0 ∀µ̂ < 0

⎧
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tµ (x) = 2log
L(x |µ)
L(x | µ̂)

Compatible
with H0

Incompatible
with H0 (N>bkg)

Compatible
with μ

Incompatible
with μ (both dir.)

Compatible
with μ(limit)

Incompatible
with μ(limit)

both directions

Incompatible
with H0 (N<bkg)

^ ^

tµ (x) = 2log
L(x |µ)
L(x | µ̂)

When considering limit μ<X 

fluctuations above Hμ

are counted against hypothesis 
When considering discovery

fluctuations below H0 are 

not counted against hypothesis 



But wait… there is more

• A similar problem of dilution of sensitivity applies when considering 
results in the form of upper limits
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Discovery
p(μ=0) = …

Measurement
μlow<μ<μhigh (68% C.L.)

Exclusion limit
μ<X (95% C.L.)
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with μ

Incompatible
with μ (both dir.)
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with μ(limit)

Observed μ 
below μ(limit)

Incompatible
with H0 (N<bkg)

^ ^

When considering limit μ<X 

fluctuations above Hμ are

not counted against hypothesis 
When considering discovery

fluctuations below H0 are 

not counted against hypothesis 

Incompatible
with Hμ (μ>μ)^
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Summary of likelihood ratio test statistics

• All LR test statistics have a calibrated coverage
– ‘Size of the test’ – generalization of concept of fixed ‘false positive rate’

• The power of the LR test statistics depends on underlying question
– Discovery (exclusion of H0) à Use q0

– Signal exclusion (exclusion of Hμ) à Use qμ

– Measurement (Conf. Interval on μ) à Use tμ

For maximum sensitivity choose the correct one

• The discovery statistic q0 is a special case of 
the ‘Feldman-Cousins’ test statistic tμ
- Bonus of feature of FC is that it automatically transitions from

the optimal formulation for discovery q0 to 
the optimal formulation for measurement (tμ) 
as the signal strength increases (without spoiling coverage)

- Note that while FC deals with downward fluctuations,
it does not deal with upward fluctuations like qμ
à limit setting power with FC (tμ) is weaker than qμ!

Wouter Verkerke, NIKHEF

These suppress influence of 
fluctuations in the ‘wrong’ direction

~



Summary of likelihood ratio test statistics

• All LR test statistics have a calibrated coverage
– ‘Size of the test’ – generalization of concept of fixed ‘false positive rate’

• The power of the LR test statistics depends on underlying question
– Discovery (exclusion of H0) à Use q0

– Signal exclusion (exclusion of Hμ) à Use qμ

– Measurement (Conf. Interval on μ) à Use tμ

For maximum sensitivity choose the correct one

• The discovery statistic q0 is a special case of 
the ‘Feldman-Cousins’ test statistic tμ
- Bonus of feature of FC is that it automatically transitions from

the optimal formulation for discovery q0 to 
the optimal formulation for measurement (tμ) 
as the signal strength increases (without spoiling coverage)

- Note that while FC deals with downward fluctuations,
it does not deal with upward fluctuations like qμ
à limit setting power with FC (tμ) is weaker than qμ!
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These suppress influence of 
fluctuations in the ‘wrong’ direction

~

Features of FC and qμ can be combined into a new test statistic qμ:

Improved limit setting power 
(upward fluctuations not counted

against hypothesis μ 
that is being excluded)

Exclusion limit is guaranteed to be >0
(avoid all signal strengths being

excluded on fluctuation below bkg-only level)

!qµ =

0 µ̂ < 0

−2log L(µ)
L(µ̂)

0 < µ̂ < µ

0 µ̂ > µ
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Summary of likelihood ratio test statistics

• All LR test statistics have a calibrated coverage
– ‘Size of the test’ – generalization of concept of fixed ‘false positive rate’

• The power of the LR test statistics depends on underlying question
– Discovery (exclusion of H0) à Use q0

– Signal exclusion (exclusion of Hμ) à Use qμ

– Measurement (Conf. Interval on μ) à Use tμ

For maximum sensitivity choose the correct one for your purpose!

• The discovery statistic q0 is a special case of 
the ‘Feldman-Cousins’ test statistic tμ
- Bonus of feature of FC is that it automatically transitions from

the optimal formulation for discovery q0 to 
the optimal formulation for measurement (tμ) 
as the signal strength increases (without spoiling coverage)

- Note that while FC deals with downward fluctuations,
it does not deal with upward fluctuations like qμ
à limit setting power with FC (tμ) is weaker than qμ!
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These suppress influence of 
fluctuations in the ‘wrong’ direction

~

A popular (but less formal) approach to ensuring that exclusion limits
do not report an empty interval in case of a fluctuation below the background-only 
expectation is the so-called CLS technique

Essence: instead of setting limit at 95% C.L. using test statistic qμ,
one aims for the 95% target in a ratio of p-values 

CLS (µ) =
p(µ)
1− p(0) p-value for μ<0

(since p(0) is p-value for μ>0)

p-value for μ<μ^
^

^

Idea: if a (negative) fluctuation is as
improbable under H(0) as under H(μ)
it is considered to carry no information
on H(μ) that value of μ is not excluded

‘ex14_roostats_cls_limit.C’



Bayesian intervals using priors to exclude unphysical regions

• Priors provide simple method to exclude unphysical regions 
• Simplified example situations for a measurement of mn

2

1. Central value comes out negative (= unphysical).
2. Even upper limit (68%) may come out negative, e.g. m2<-5.3,
3. What is inference on neutrino mass, given that is must be >0? 

– Introducing prior that excludes unphysical region ensure limit in physical range of 
observable (m2<6.4)

• Beware of apparent simplicity – strong entanglement with ill-defined 
concept of ‘flat prior’! Wouter Verkerke, NIKHEF

p(μ|x0) with flat prior p(μ|x0) with p’(μ)p’(μ)



Numeric comparison Bayes/FC limit results for Gaussian measurement

• Bayesian 95% credible upper-limit interval with flat prior μ>0 

tμ(x,μ)
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Gauss(x|μ,1)
95% Confidence belt in (x,μ) 
defined by cut on tμ for

Note that tμ / Feldman-Cousins automatically
switches from ‘upper limit’ to ‘two-sided’
à “unified procedure”

Note that Bayesian and Frequentist intervals
at x>2 would agree exactly for Gaussian example 
if both would be taken as ‘two-sided’
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Using priors to exclude unphysical regions

• Do you want publish (only) results restricted to the physical region?
– It depends very much to what further analysis and/or combinations is needed…

• An interval / parameter estimate that in includes unphysical still 
represents the best estimate of this measurement

– Straightforward to combined with future measurements,
new combined result might be physical (and more precise)

– You need to decide between ‘reporting outcome of this measurement’ vs
‘updating belief in physics parameter’

• Procedures exist to guarantee that procedures result in non-empty 
intervals in physics domain

– Frequentist confidence intervals à Modified test statistics

– Bayesian credible intervals à Priors that exclude unphysical regions

• When reporting results constrained to physical region
always aim to also report unconstrained results

– Unconstrained results carry more information for future 
combination/interpretation Wouter Verkerke, NIKHEF



Expected results

• An important part of experimental design is being able to quantify 
the expected sensitivity of your proposed analysis

– Briefly touched on this already when discussing connection between LR and 
optimal event selection

– Only considered simplest analysis design (Poisson counting)
and one metric (p-value of background-only hypothesis)

• Will now generalize in 2 ways
1. Type of statistical models: 

calculate sensitivity for 
any type of statistical model
– Via a LR test statistic

2. Types of output statement
– Discovery (p0), Signal Exclusion,

and Measurement
– In addition to median expectation

(of p0 etc) also calculate
uncertainty interval due to 
expected statistical fluctuations



Expected sensitivity distributions - Poisson

• Given a Poisson counting experiment 
P(N|S+B)  with B=5 events

• Q: What is the median expected p-value 
for a hypothetical signal S=15?

• A: 

• Q: What is spread in p-values for a 
hypothetical signal S=15?

• A: To obtain 68% (95%) intervals for p-values, 
map 68%(95%) intervals of observable 
distribution (N) to p/Z-value intervals

68% interval p-values: [ 6.09 10-5 – 8.07 10-10 ], Z [ 3.8-6.0 ]
95% interval p-values: [ 1.37 10-2 – 1.70 10-13 ], Z [ 2.2-7.2 ]

Wouter Verkerke, NIKHEF

p0 = Poisson(i | 5) = 2.11⋅10−5→ Z = 5.0σ
i=20

∞

∑



Expected sensitivity – comparison with Likelihood Ratio

• Compare distributions of counting experiment, direct vs LR

Wouter Verkerke, NIKHEF

f=Poisson

f=q0

Expression for Poisson distributions

F0(N)=Poisson(N|0+5)

F15(N)=Poisson(N|15+5)

Expression for discovery test statistic q0
asymptotic distributions

F0(q0) =        0.5δ(q0) + 0.5fΧ2(q0,1)

F15(q0)= (1-Φ(Λ15))δ(q0) + 0.5fNCΧ2(q0,1,Λ15)

Λ15 = q0(15)



Expected sensitivity – comparison with Likelihood Ratio

• Compare distributions of counting experiment, direct vs LR

Wouter Verkerke, NIKHEF

f=Poisson

f=q0

Expression for Poisson distributions

F0(N)=Poisson(N|0+5)

F15(N)=Poisson(N|15+5)

Expression for discovery test statistic q0
asymptotic distributions

F0(q0) =        0.5δ(q0) + 0.5fΧ2(q0,1)

F15(q0)= (1-Φ(Λ15))δ(q0) + 0.5fNCΧ2(q0,1,Λ15)

Λ15 = q0(15)

Φ(x) = Cumulative of unit Gaussian

fΧ2(x,k) = Χ2 distribution for k d.o.f.

fNCΧ2 (x,k,Λ) = non-central Χ2 distribution for k d.o.f.
with impact parameter Λ



Expected sensitivity – Poisson Likelihood Ratio asymptotics

• If you have sufficient statistics in your measurement asymptotic 
expressions for distributions of q0(0) and q0(μ) allow for 
direct calculation of median significance and its statistical uncertainty

• Direct calculation of median upper limit and it’s statistical uncertainty

Wouter Verkerke, NIKHEF

q0 distribution for S=0 observed
q0 distribution for S=15 observed

Median[q0,15] = q0(15)

Median[Z0(15)] = √Med[q0,15]= 5.0σ

68% interval = [ √Med[q0,15]-1, √Med[q0,15]+1 ] = [ 4.0, 6.0 ]
95% interval = [ √Med[q0,15]-2, √Med[q0,15]+2 ] = [ 3.0, 7.0 ]

q15 distribution for S=15 observed
q15 distribution for S=0 observed

‘Discovery p0 for 

S=15 observed’

‘Upper lim
it on μ 

for S=0 observed’

To obtain 95% excl. limit on S, find value of X that
for which a test statistic qμ=X for S=0 observed yields 0.05

à No analytical solution à must scan qμ=X for X=0…15



Expected sensitivity – Asymptotic upper limits

• Visualization of scanning process

Wouter Verkerke, NIKHEFp-value = 0.05 for qμ>2.7 (defined by f(qμ|μ)

F(qμ|1) à Med[qμ|1]=0.18
F(qμ|2) à Med[qμ|2]=0.63
…
F(qμ|8.8) à Med[qμ|8.8]=2.7
…
F(qμ|15) à Med[qμ|1]=16.0

Result s<8.8 at 95% C.L.

Asymptotically:
μUL95%=σ*Φ-1(0.95)  à σ=μUL95%/1.67=5.27

μUL95%±Nσ=σ*(Φ-1(0.95)±N)

1σ band = [ 3.5,14.1]
2σ band = [-1.8,19.4]



Expected sensitivity – Asymptotic vs Toys

• Demonstrated asymptotic formulas for 
expected discovery p0 and 
expected signal exclusions
along with N sigma uncertainty bands for Poisson counting model

• Use of asymptotic formulas only valid in limit of sufficient statistics!

Wouter Verkerke, NIKHEF

Easy to verify numerically
for counting experiments

Decent results already for N>=10!

If outside validity regime
à obtain f(qμ|μ’) from simulation
à very CPU intensive because

* For 5σ discovery need, O(109) toys
to model tail of f(q0|0) far out

* For 95% limits need repeatedly generate 
O(104) toys to remodel distribution f(qμ|μ’) 
at every scan point of μ’ 



Expected sensitivity – Asymptotic vs Toys

• Demonstrated asymptotic formulas for 
expected discovery p0 and 
expected signal exclusions
along with N sigma uncertainty bands for Poisson counting model

• Use of asymptotic formulas only valid in limit of sufficient statistics!

Wouter Verkerke, NIKHEF

Easy to verify numerically
for counting experiments

Decent results already for N>=10!

If outside validity regime
à obtain f(qμ|μ’) from simulation
à very CPU intensive because

* For 5σ discovery need, O(109) toys
to model tail of f(q0|0) far out

* For 95% limits need repeatedly generate 
O(104) toys to remodel distribution f(qμ|μ’) 
at every scan point of μ’ 

Numeric limit scan:
For every line in this plot

Make a toy MC run to make a histogram

‘ex14_roostats_cls_limit_toys.C’



Expected sensitivity – Beyond counting experiments

• NB: Asymptotic formulas make use of concept 
‘expectation value data’ sets

• For counting experiments this trivial, e.g. dataset N=20,
represent exactly expectation value of Poisson(N|20)  

Wouter Verkerke, NIKHEF



Expected sensitivity – Beyond counting experiments

• NB: Asymptotic formulas make use 
of concept  ‘expectation value data’
sets

• For generic data (e.g. with distributions) an analogous concept 
can defined – the ‘so-called Asimov dataset’

– For example for Gaussian distribution in an observable x, 
the Asimov dataset is a dataset without any statistical fluctuations

• Asymptotic formulas can thus be used for 
measurements of any shape and form (given enough statistics)  

‘regular’ sampled dataset ‘Asimov’ dataset



Expected results

• Example plot from
Higgs boson discovery

Wouter Verkerke, NIKHEF

Limit

Discovery

Measurement



Wouter Verkerke, NIKHEF

Software tools 2 
RooStats and its interface to RooFit



Everything starts with the likelihood

Wouter Verkerke, NIKHEF

Frequentist statistics 

Confidence interval
or p-value

Posterior on s
or Bayes factor

s = x ± y

Bayesian statistics Maximum Likelihood

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!

!



How is Higgs discovery different from a simple fit?

Wouter Verkerke, NIKHEF 

Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

ML estimation of
parameters μ,θ using MINUIT 
(MIGRAD, HESSE, MINOS)



ML estimation of
parameters μ,θ using MINUIT 
(MIGRAD, HESSE, MINOS)

How is Higgs discovery different from a simple fit?

Wouter Verkerke, NIKHEF 

Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

Likelihood Model
orders of magnitude more
complicated. Describes

- O(100) signal distributions
- O(100) control sample distr.
- O(1000) parameters

representing 
syst. uncertainties

Frequentist confidence interval
construction and/or p-value
calculation not available
as ‘ready-to-run’ algorithm 
in ROOT



How is Higgs discovery different from a simple fit?

Wouter Verkerke, NIKHEF 

Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

Model Building phase (formulation of L(x|H)

ML estimation of
parameters μ,θ using MINUIT 
(MIGRAD, HESSE, MINOS)



ML estimation of
parameters μ,θ using MINUIT 
(MIGRAD, HESSE, MINOS)

How is Higgs discovery different from a simple fit?

Wouter Verkerke, NIKHEF 

Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

Model Usage phase (use L(x|H) to make statement on H)



ML estimation of
parameters μ,θ using MINUIT 
(MIGRAD, HESSE, MINOS)

How is Higgs discovery different from a simple fit?

Wouter Verkerke, NIKHEF 

Higgs combination modelGaussian + polynomial

L(
!
N |µ,

!
θ ) = Poisson(

i
∏ Ni | f (xi,µ,

!
θ )

ROOT TH1 ROOT TF1

μ = 5.3 ± 1.7

“inside ROOT”

Design goal:
Separate building of Likelihood model as much as possible
from statistical analysis using the Likelihood model

à More modular software design
à ‘Plug-and-play with statistical techniques
à Factorizes work in collaborative effort 



The idea behind the design of RooFit/RooStats/HistFactory

• Modularity, Generality and flexibility
• Step 1 – Construct the likelihood function L(x|p)

• Step 2 – Statistical tests on parameter of interest p 

Procedure can be Bayesian, Frequentist, or Hybrid), 
but always based on L(x|p)

• Steps 1 and 2 are conceptually separated, 
and in Roo* suit also implemented separately.

Wouter Verkerke, NIKHEF 

RooFit,  or  RooFit+HistFactory

RooStats



The idea behind the design of RooFit/RooStats/HistFactory

• Steps 1 and 2 can be ‘physically’ separated (in time, or user)
• Step 1 – Construct the likelihood function L(x|p)

• Step 2 – Statistical tests on parameter of interest p

Wouter Verkerke, NIKHEF 

RooFit,  or  RooFit+HistFactory

RooStats

RooWorkspace

Complete description
of likelihood model,
persistable in ROOT file
(RooFit pdf function)

Allows full introspection
and a-posteriori editing



The benefits of modularity

• Perform different statistical test on exactly the same model

Wouter Verkerke, NIKHEF 

RooFit,  or  RooFit+HistFactory

RooStats
(Frequentist
with toys) 

RooWorkspace

RooStats
(Frequentist
asymptotic) 

RooStats
Bayesian
MCMC

“Simple fit”
(ML Fit with
HESSE or
MINOS)



Running RooStats interval calculations ‘out-of-the-box’

• Confidence intervals calculated with model
– ‘Simple

Fit’

– Feldman
Cousins
(Frequentist
Confidence
Interval)

– Bayesian 
(MCMC)

Wouter Verkerke, NIKHEF 

FeldmanCousins fc; 
fc.SetPdf(myModel); 
fc.SetData(data); fc.SetParameters(myPOU); 
fc.UseAdaptiveSampling(true); 
fc.FluctuateNumDataEntries(false); 
fc.SetNBins(100); // number of points to test per parameter 
fc.SetTestSize(.1); 
ConfInterval* fcint = fc.GetInterval(); 

UniformProposal up; 
MCMCCalculator mc; 
mc.SetPdf(w::PC); 
mc.SetData(data);  mc.SetParameters(s); 
mc.SetProposalFunction(up); 
mc.SetNumIters(100000); // steps in the chain 
mc.SetTestSize(.1); // 90% CL 
mc.SetNumBins(50); // used in posterior histogram 
mc.SetNumBurnInSteps(40); 
ConfInterval* mcmcint = mc.GetInterval();

RooAbsReal* nll = myModel->createNLL(data) ;
RooMinuit m(*nll) ;

m.migrad() ;

m.hesse() ;



But you can also look ‘in the box’ and build your own

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries…)

High-level tool that constructs the confidence belt



But you can also look ‘in the box’ and build your own

)|( µµ ¢qf
Tool to construct 
test statistic distribution

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries…)

The test statistic
to be used for
the calculation
of p-values 

)(µµ ¢q



But you can also look ‘in the box’ and build your own

Tool to scan over
values of μ to find a qμ
that results in a p-value
of 0.05 (for 95% C.L.)

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries…)



But you can also look ‘in the box’ and build your own

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries…)

Optionally choose
a technique to avoid 
spurious exclusions
(all at 95% C.L.
signal excluded

due to low fluctuation)

Options are 
1) FC-style test stat qμ
2) CLS: calculate

p-value from qμ
divide by p-value
of bkg hypothesis
in scan for 95% point.



But you can also look ‘in the box’ and build your own

Offset advanced control over details of statistical
procedure (use of CLS, choice of test statistic, boundaries…)

Run calculation

Extract result

Make optional plot



Summary
• RooFit and RooStats allow you to perform advanced statistical data 

analysis
– LHC Higgs results a prominent example

Wouter Verkerke, NIKHEF 

• RooFit provides (almost) limitless 
model building facilities

– Concept of persistable model workspace allows to 
separate model building and model interpretation

– HistFactory package introduces structured model 
building for binned  likelihood template models that 
are common in LHC analyses

• Concept of RooFit Workspace has
completely restructured HEP analysis
workflow with ‘collaborative modeling’

• RooStats provide a wide set of statistical 
tests that can be performed on RooFit 
models

– Bayesian, Frequentist and Likelihood-based test 
concepts

CMS

ATLAS



Full demo of RooFit/RooStats calculation

• Phase 1 – Build model (here just a Poisson), prepare for use

Wouter Verkerke, NIKHEF

RooWorkspace w("w") ;

// Construct a single Poisson model P(N|mu*S+B)
w.factory("Poisson::model('mu*S+B',mu[1,-1,10],S[10],B[20])") ;
w.factory("expr::Nexp( (Nobs[0,100],Nexp)") ;

// Construct a dataset containing N=25
RooDataSet d("d","d",*w.var("Nobs")) ;
w.var("Nobs")->setVal(25) ;
d.add(*w.var("Nobs")) ;
w.import(d,RooFit::Rename("observed_data")) ;

// Construct interpretatation of model used by RooStats
RooStats::ModelConfig mc("ModelConfig",&w);

// Define the pdf, the parameter of interest and the observables
mc(*w.pdf("model"));
mc.SetParametersOfInterest(*w.var("mu"));
mc.SetObservables.SetPdf (*w.var("Nobs"));

// Define the current value mu (1) as an hypothesis 
mc.SetSnapshot(*w.var("mu"));

// import model in the workspace 
w.import(mc);
w.writeToFile("model.root") ;

Poisson::model(Nobs|μS+B)

f(N|μ) = model
POI=μ
obs=Nobs

H1=model(μ=1)
H0=model(μ=0) [ implicit ]

‘ex09_build_Poisson.C’



Full demo of RooFit/RooStats calculation

• Phase 2 – Perform limit calculation

Wouter Verkerke, NIKHEF

// Retrieve components
RooWorkspace* w = (RooWorkspace*) f->Get("w") ;
RooAbsData* data = w->data("observed_data") ;
RooStats::ModelConfig* sbModel = (RooStats::ModelConfig*) w->obj("ModelConfig") ;

// Construct B-only model (for CLS) as clone of P(N|muS+B) with B=0
RooStats::ModelConfig* bModel = (RooStats::ModelConfig*) sbModel->Clone("BonlyModel") ;
RooRealVar* poi = (RooRealVar*) bModel->GetParametersOfInterest()->first();
poi->setVal(0) ;
bModel->SetSnapshot( *poi  );

// Use calculator based on asymptotic formulas
RooStats::AsymptoticCalculator  asympCalc(*data, *bModel, *sbModel);
asympCalc.SetOneSided(true);  

// Request 90% C.L. upper limit with CLS technique enabled
RooStats::HypoTestInverter inverter(asympCalc);
inverter.SetConfidenceLevel(0.90);
inverter.UseCLs(true); 

// Run interval calculation
inverter.SetVerbose(false);
inverter.SetFixedScan(50,0.0,6.0); // set number of points , xmin and xmax 
RooStats::HypoTestInverterResult* result =  inverter.GetInterval();

// Report results
cout << 100*inverter.ConfidenceLevel() << "%  upper limit : " << result->UpperLimit() << endl;
std::cout << "Expected upper limits, using the B (alternate) model : " << std::endl;
std::cout << " expected limit (median) " << result->GetExpectedUpperLimit(0) << std::endl;
std::cout << " expected limit (-1 sig) " << result->GetExpectedUpperLimit(-1) << std::endl;
std::cout << " expected limit (+1 sig) " << result->GetExpectedUpperLimit(1) << std::endl;

‘ex10_roostats_plr_interval.C’

‘ex10_roostats_bayes_interval.C’
‘ex14_roostats_cls_limit.C’
‘ex14_roostats_cls_limit_toys.C’



Full demo of RooFit/RooStats calculation

• Phase 2 – Perform limit calculation

Wouter Verkerke, NIKHEF

// Retrieve components
RooWorkspace* w = (RooWorkspace*) f->Get("w") ;
RooAbsData* data = w->data("observed_data") ;
RooStats::ModelConfig* sbModel = (RooStats::ModelConfig*) w->obj("ModelConfig") ;

// Construct B-only model (for CLS) as clone of P(N|muS+B) with B=0
RooStats::ModelConfig* bModel = (RooStats::ModelConfig*) sbModel->Clone("BonlyModel") ;
RooRealVar* poi = (RooRealVar*) bModel->GetParametersOfInterest()->first();
poi->setVal(0) ;
bModel->SetSnapshot( *poi  );

// Use calculator based on asymptotic formulas
RooStats::AsymptoticCalculator  asympCalc(*data, *bModel, *sbModel);
asympCalc.SetOneSided(true);  

// Request 90% C.L. upper limit with CLS technique enabled
RooStats::HypoTestInverter inverter(asympCalc);
inverter.SetConfidenceLevel(0.90);
inverter.UseCLs(true); 

// Run interval calculation
inverter.SetVerbose(false);
inverter.SetFixedScan(50,0.0,6.0); // set number of points , xmin and xmax 
RooStats::HypoTestInverterResult* result =  inverter.GetInterval();

// Report results
cout << 100*inverter.ConfidenceLevel() << "%  upper limit : " << result->UpperLimit() << endl;
std::cout << "Expected upper limits, using the B (alternate) model : " << std::endl;
std::cout << " expected limit (median) " << result->GetExpectedUpperLimit(0) << std::endl;
std::cout << " expected limit (-1 sig) " << result->GetExpectedUpperLimit(-1) << std::endl;
std::cout << " expected limit (+1 sig) " << result->GetExpectedUpperLimit(1) << std::endl;

AsymptoticCalculator . 
calculates p-values

for given hypothesis μ

CLS ratio divides  
p(s+b) 
by p(b)

Hypothesis inverter finds
intersection of CLS with

target p-value (0.10) for 90% C.L.


