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Probabilities vs conditional probabilities

• Note that probability models strictly give conditional probabilities
(with the condition being that the underlying hypothesis is true)

• Suppose we measure N=7 then can calculate

L(N=7|Hbkg)=2.2%       L(N=7|Hsig+bkg)=14.9%

• Data is more likely under sig+bkg hypothesis than bkg-only hypo

• Is this what we want to know? Or do we want to know L(Hs+b|N=7)?
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P(N )→ P(N |Hbkg ) P(N )→ P(N |Hsig+bkg )

Definition: 
P(data|hypo) is called 

the likelihood

[Recap]



Interpreting probabilities

• Frequentist: 
Constants of nature are fixed – you cannot assign a probability to 
these. Probability are restricted to observable experimental results

– “The Higgs either exists, or it doesn’t” – you can’t assign a probability to that
– Definition of P(data|hypo) is objective (and technical)

• Bayesian:
Probabilities can be assigned to constants of nature

– Quantify your belief in the existence of the Higgs – can assign a probablity
– But is can very difficult to assign a meaningful number (e.g. Higgs)

• Example of weather forecast

Bayesian: “The probability it will rain tomorrow is 95%”
– Assigns probability to constant of nature (“rain tomorrow”)

P(rain-tomorrow|satellite-data) = 95%

Frequentist: “If it rains tomorrow, 
95% of time satellite data looks like what we observe now”

– Only states P(satellite-data|rain-tomorrow) Wouter Verkerke, NIKHEF
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Formulating evidence for discovery

• In the frequentist school you restrict yourself to P(data|theory)
and there is no concept of ‘priors’

– But given that you consider (exactly) 2 competing hypothesis,
very low probability for data under Hb lends credence to ‘discovery’ of Hsb
(since Hb is ‘ruled out’). Example

• Given importance to interpretation of the lower probability, it is 
customary to quote it in “physics intuitive” form: Gaussian σ.

– E.g. ‘5 sigma’ à probability of 5 sigma Gaussian fluctuation =2.87x10-7

• No formal rules for ‘discovery threshold’
– Discovery also assumes data is not too unlikely under Hsb. If not, no discovery,

but again no formal rules (“your good physics judgment”)

– NB: In Bayesian case, both likelihoods low reduces Bayes factor K to O(1)    
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P(data|Hb)=10-7

P(data|Hsb)=0.5 “Hb ruled out” à “Discovery of Hsb”

[Recap]



Working with Likelihood functions for distributions

• How do the statistical inference procedures change 
for Likelihoods describing distributions?

• Bayesian calculation of P(theo|data) they are exactly the same.
– Simply substitute counting model with binned distribution model 
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Working with Likelihood functions for distributions

• Frequentist calculation of P(data|hypo) also unchanged, 
but question arises if P(data|hypo) is still relevant?

• L(N|H) is probability to obtain exactly the histogram observed.

• Is that what we want to know? Not really.. We are interested in 
probability to observe any ‘similar’ dataset to given dataset,
or in practice dataset ‘similar or more extreme’ that observed data

• Need a way to quantify ‘similarity’ or ‘extremity’ of observed data
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• Now make a measurement N=Nobs (example Nobs=7)

• Definition: p-value: 
probability to obtain the observed data, or more extreme
in future repeated identical experiments

– Example: p-value for background-only hypothesis

P-values for counting experiments
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[Recap]



The Likelihood Ratio as a test statistic

• Given two hypothesis Hb and Hs+b the ratio of likelihoods
is a useful test statistic

• Intuitive picture: 

à If data is likely under Hb,                à If data is likely under Hs+b
L(N|Hb) is large,                                 L(N|Hs+b) is large,
L(N|Hs+b) is smaller                            L(N|Hb) is smaller 
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Visualizing the Likelihood Ratio as ordering principle

• The Likelihood ratio as ordering principle

• Frequentist solution to ‘relevance of P(data|theory’) is to order all 
observed data samples using a (Likelihood Ratio) test statistic

– Probability to observe ‘similar data or more extreme’ then amounts to 
calculating ‘probability to observe test statistic λ(N) as large or larger than the 
observed test statistic λ(Nobs)
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L(N|Hs+b)=small
L(N|Hb)=large

L(N|Hs+b)=soso
L(N|Hb)=soso

L(N|Hs+b)=large
L(N|Hb)=small

λ(N)=0.0005 λ(N)=0.47 λ(N)=5000

[Recap]



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods

[Recap]
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Parameter estimation – Maximum likelihood

• Practical estimation of maximum likelihood performed 
by minimizing the negative log-Likelihood

– Advantage of log-Likelihood is that contributions from events can be summed, 
rather than multiplied (computationally easier)

• In practice, find point where derivative of –logL is zero

• Standard notation for ML estimation of p is p
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Example of Maximum Likelihood estimation

• Illustration of ML estimate on Poisson counting model

• Note that Poisson model is discrete in N, but continuous in s!
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-log L(N|s) versus s   [N=7]

s=2

s=0

s=5
s=10

s=15

L(N | s) = Poisson(N | s+ !b)

-log L(N|s) versus N   [s=0,5,10,15]

^

[Recap]



Estimating variance on parameters

• Variance on of parameter can also be estimated from Likelihood 
using the variance estimator

• Valid if estimator is efficient and unbiased!

• Illustration of Likelihood Variance estimate on a Gaussian distribution
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What can we do with composite hypothesis

• With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)

• With composite hypotheses – many more options

• 1 Parameter estimation and variance estimation
– What is value of s for which the observed data is most probable?

– What is the variance (std deviation squared) in the estimate of s?

• 2 Confidence intervals
– Statements about model parameters using frequentist concept of probability

– s<12.7 at 95% confidence level
– 4.5 < s < 6.8 at 68% confidence level

• 3 Bayesian credible intervals 
– Bayesian statements about model parameters

– s<12.7 at 95% credibility
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s=5.5 ± 1.3

[Recap]



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
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da
y 

1
da

y 
2

da
y 

3



Wouter Verkerke, NIKHEF

Statistical 
methods 3 
(continued)

Inference with parameters: 
maximum likelihood, confidence 

intervals, upper limits, likelihood 
ratio and asymptotic formulae
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What can we do with composite hypothesis

• With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)

• With composite hypotheses – many more options

• 1 Parameter estimation and variance estimation
– What is value of s for which the observed data is most probable?

– What is the variance (std deviation squared) in the estimate of s?

• 2 Confidence intervals
– Statements about model parameters using frequentist concept of probability

– s<12.7 at 95% confidence level
– 4.5 < s < 6.8 at 68% confidence level

• 3 Bayesian credible intervals 
– Bayesian statements about model parameters

– s<12.7 at 95% credibility

Wouter Verkerke, NIKHEF

s=5.5 ± 1.3



Interval estimation with fundamental methods

• Can also construct parameters intervals using ‘fundamental’ 
methods explored earlier (Bayesian or Frequentist)

• Construct Confidence Intervals or Credible Intervals with defined 
probabilistic meaning, independent of assumptions on normality of 
distribution (Central Limit Theorem) à “95% C.L.”

• With fundamental methods you greater flexibility in types of 
interval.  E.g when no signal observed à usually wish to set an 
upper limit (construct ‘upper limit interval’)

Wouter Verkerke, NIKHEF



Reminder - Frequentist test statistics and p-values

• Definition of ‘p-value’: Probability to observe this outcome or more 
extreme in future repeated measurements is x%, if hypothesis is 
true

• Note that the definition of p-value assumes an explicit ordering of 
possible outcomes in the ‘or more extreme’ part

Wouter Verkerke, NIKHEF
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s=5
s=10

s=15

)23.0()0;( =+= ò
¥

obsN
b dNbNPoissonp



P-values with a likelihood ratio test statistic

• With the introduction of a (likelihood ratio) test statistic, hypothesis 
testing of models of arbitrary complexity is now reduced to the 
same procedure as the Poisson example

• Except that we generally 
don’t know distribution f(λ)…

λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

log(λ)

λobs

p− value = f (λ |Hb )
λobs

∞

∫



A different Likelihood ratio for composite hypothesis testing

• On composite hypotheses, where both null and alternate 
hypothesis map to values of μ, we can define an alternative
likelihood-ratio test statistics that has better properties

• Advantage: distribution of new λμ has known asymptotic form

• Wilks theorem: distribution of –log(λμ) is asymptotically distribution 
as a χ2 with Nparam degrees of freedom*

*Some regularity conditions apply

• à Asymptotically, we can directly calculate p-value from λμobs

Wouter Verkerke, NIKHEF

λ(

N ) = L(


N |H0 )
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N |µ)

L(

N | µ̂)

‘simple hypothesis’ ‘composite hypothesis’ 

‘Best-fit value’

Hypothesis 
μ that is being 
tested



What does a χ2 distribution look like for n=1?

• Note that it for n=1, it does not peak at 1, but rather at 0…
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Composite hypothesis testing in the asymptotic regime

• For ‘histogram example’: what is p-value of null-hypothesis

− logµ

t0 = 34.77

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit 
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large

P-value = TMath::Prob(34.77,1) 
= 3.7x10-9

Wilks: f(λ|0) à χ2 distribution



Composite hypothesis testing in the asymptotic regime

• For ‘histogram example’: what is p-value of null-hypothesis

t0 = 34.77 t0 = 0.02

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit 
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large On background-like data t0 is small

P-value = TMath::Prob(34.77,1) 
= 3.7x10-9

P-value = TMath::Prob(0.02,1) 
= 0.88

Use
Wilks

Theorem



How quickly does f(λμ|μ) converge to its asymptotic form

• Pretty quickly –

Wouter Verkerke, NIKHEF

Here is an example of likelihood function
for 10-bin distribution with 200 events

Here is an example for event
counting at various s,b



From hypothesis testing to confidence intervals

• Next step for composite hypothesis is to go from p-values for a 
hypothesis defined by fixed value of μ to an interval statement on μ 

• Definition: A interval on μ at X% confidence level is defined such that 
the true of value of μ is contained X% of the time in the interval.

– Note that the output is not a probabilistic statement on the true s value 
– The true μ is fixed but unknown – each observation will result in an estimated 

interval [μ-,μ+]. X% of those intervals will contain the true value of μ
– Coverage = guarantee that probabilistic statements is true (i.e. repeated future 

experiments do reproduce results in X% of cases)

• Definition of confidence intervals does not make 
any assumption on shape of interval 

à Can choose one-sided intervals (‘limits’), 
two-sided intervals (‘measurements’),
or even disjoint intervals (‘complicated measurements’)

Wouter Verkerke, NIKHEF



Exact confidence intervals – the Neyman construction

• Simplest experiment: one measurement (x), one theory parameter (q)
• For each value of parameter θ, determine distribution in in observable 

x

Wouter Verkerke, NIKHEF

observable x

pa
ra

met
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 θ



How to construct a Neyman Confidence Interval

• Focus on a slice in θ

– For a 1-a% confidence Interval, define acceptance interval
that contains 100%-a% of the distribution

Wouter Verkerke, NIKHEF

observable x

pdf for observable x
given a parameter value θ0



How to construct a Neyman Confidence Interval

• Definition of acceptance interval is not unique 
à Choose shape of interval you want to set here.

– Algorithm to define acceptance interval is called ‘ordering rule’

Wouter Verkerke, NIKHEF

observable x

pdf for observable x given a parameter value θ0

observable x

observable x

Lower Limit

Central Interval

Other options, are e.g. 
‘symmetric’ and ‘shortest’



How to construct a Neyman Confidence Interval

• Now make an acceptance interval in observable x
for each value of parameter θ

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval

• This makes the confidence belt

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval

• This makes the confidence belt
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How to construct a Neyman Confidence Interval

• The confidence belt can constructed in advance of any 
measurement, it is a property of the model, not the data

• Given a measurement x0, a confidence interval [θ+,θ-] can be 
constructed as follows

• The interval [θ-,θ+] has a 68% probability to cover the true value

Wouter Verkerke, NIKHEF
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What confidence interval means & concept of coverage

• A confidence interval is an interval on a parameter that contains 
the true value X% of the time

• This is a property of the procedure, and should be interpreted in 
the concept of repeated identical measurements:

Each future measurement will result a confidence interval that has 
somewhat different limits every time
(‘confidence interval limits are a random variable’)

But procedure is constructed such that true value is in X% of the 
intervals in a series of repeated measurements
(this calibration concept is called ‘coverage’. The Neyman
constructions guarantees coverage)

• It is explicitly not a probability statement on the true value 
you are trying to measure. In the frequentist the true value is fixed 
(but unknown)

Wouter Verkerke, NIKHEF



The confidence interval – Poisson counting example

• Given the probability model for Poisson counting example: for 
every hypothesized value of s, plot the expected distribution N

Wouter Verkerke, NIKHEF
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Confidence belt for
68% and 90% central intervals

Confidence belt for
68% and 90% lower limit

‘central’
ordering
rule

‘lower limit’
ordering
rule



The confidence interval – Poisson counting example

• Given confidence belt and observed data, confidence interval on 
parameter is defined by belt intersection

Confidence belt for
68% and 90% central intervals

Confidence belt for
68% and 90% lower limit

Nobs Nobs
Central interval on s at 68% C.L. Lower limit on s at 90% C.L.



Confidence intervals using the Likelihood Ratio test statistic

• Neyman Construction on Poisson counting looks like ‘textbook’ belt. 
• In practice we’ll use the Likelihood Ratio test statistic to summarize the 

measurement of a (multivariate) distribution for the purpose of 
hypothesis testing.

• Procedure to construct belt with LR is  identical: 
obtain distribution of λ for every value of μ to construct confidence belt   

x=3.2

observable x

pa
ra

m
et

er
 μ

λμ(x,μ)

Likelihood Ratio λ

pa
ra

m
et

er
 μ

?



The asymptotic distribution of the likelihood ratio test statistic

• Given the likelihood ratio 

Q: What do we know about asymptotic distribution of λ(μ)? 

• A: Wilks theorem à Asymptotic form of  f(t|μ) is a χ2 distribution

f(tμ|μ) = c2(tμ,n)

• Note that f(tμ|μ) is independent of μ!
à Distribution of tμ is the same for every ‘horizontal slice’ of the belt

Wouter Verkerke, NIKHEF

tµ = −2 logλµ (x) = −2 log
L(x |µ)
L(x | µ̂)

Where 
μ is the hypothesis being tested and 
n is the number of parameters (here 1: μ )



Confidence intervals using the Likelihood Ratio test statistic

• Procedure to construct belt with LR is identical: 
obtain distribution of λ for every value of μ to construct belt   

x=3.2

observable x

pa
ra

m
et

er
 μ

tμ(x,μ)

Likelihood 
Ratio

pa
ra

m
et

er
 μ

Confidence 
belt now 
range in LR



What does the observed data look like with a LR?

• Note that while belt is (asymptotically) independent of parameter μ, 
observed quantity now is dependent of the assumed μ

x=3.2

observable x

pa
ra

m
et

er
 μ

tμ(x,μ)

Likelihood Ratio
pa

ra
m

et
er

 μ

Measurement = tμ(xobs,μ) 
is now a function of μ



Connection with likelihood ratio intervals

• If you assume the asymptotic distribution for tμ, 
– Then the confidence belt is exactly a box 
– And the constructed confidence interval can be simplified

to finding the range in μ where tμ=½×Z2

à This is exactly the MINOS error

Wouter Verkerke, NIKHEF
tμ
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FC interval with Wilks Theorem MINOS / Likelihood ratio interval

‘ex10_roostats_plr_interval.C’



Recap on confidence intervals

• Confidence intervals on parameters are constructed 
to have precisely defined probabilistic meaning

– This calibration is called “coverage” 
The Neyman Construction has coverage by construction

– This is different from parameter variance estimates 
(or Bayesian methods) that don’t have (a guaranteed) coverage

– For most realistic models confidence intervals are calculated using 
(Likelihood Ratio) test statistics to define the confidence belt

• Asymptotic properties
– In the asymptotic limit (Wilks theorem), 

Likelihood Ratio interval converges to a 
Neyman Construction interval 
(with guaranteed coverage) “Minos Error”
NB: the likelihood does not need to be
parabolic for Wilks theorem to hold

– Separately, in the limit of normal distributions the 
likelihood becomes exactly parabolic and 
the ML Variance estimate converges to 
the Likelihood Ratio interval Wouter Verkerke, NIKHEF



Beware the curse of “regularity conditions”!

• Asymptotic distributions for test statistics apply in the limit of large 
statistics, but some “regularity conditions” appy (”Wilks Theorem”)

• Beware of those “regularity conditions” as they spoil asymptotic 
assumptions even in the limit of large statistics!

• Common situations that defy “regularity conditions” are
– Boundaries on parameters (in the sensitive region of the data)

– Variable dimensionality of parameter space (floating yield and location of a signal à
when yield=0, then signal location parameter is undefined)

– Existence of multiple minima (usually induced by non-linear dependence of likelihood 
on parameter of interest)

• Non-Asymptotic cases – Higgs offshell as an example
– From offshell Higgs strength you can measure the Higgs resonant width.

– But strong interference with background in offshell region
à Signal yield is linearly dependent on signal strength μ
à Interference effect on yield is dependent √μ
If both contributions are non-negligible 
à Regularity conditions violated, assumption of asymptotic distributions invalid!



1σ 2σ 3σ

Asymptotic thresholds

Thresholds from 
toy ensemble
Thresholds from 
toy ensemble

Thresholds from 
toy ensemble
Thresholds from 
toy ensemble
Thresholds from 
toy ensemble
Thresholds from 
toy ensemble

Beware the curse of “regularity conditions”!

• Example of non-asymptotic test statistic distributions in the case of 
the Higgs offshell measurement 



Beware the curse of “regularity conditions”!

• Example of non-asymptotic test statistic distributions in the case of 
the Higgs offshell measurement 

Asymptotic
Thresholds

Thresholds from 
toy ensemble



Beware the curse of “regularity conditions”!

• Example of non-asymptotic test statistic distributions in the case of 
the Higgs offshell measurement 

68% C.I asymptotic approximation



Beware the curse of “regularity conditions”!

• Example of non-asymptotic test statistic distributions in the case of 
the Higgs offshell measurement 

68% C.I exact



Bayesian inference with composite hypothesis

• With change LàL(μ) the prior and posterior model probabilities 
become probability density functions

Wouter Verkerke, NIKHEF

P(Hs+b |
!
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!
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H(μ)

P(µ |
!
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!
N |µ)P(µ)

Prior 
probability density

Posterior
probability density

NB: Likelihood is not a probability density



Bayesian credible intervals

• From the posterior density function, a credible interval can be 
constructed through integration

• Note that Bayesian interval estimation require no minimization 
of –logL, just integration Wouter Verkerke, NIKHEF

95% credible central interval 95% credible upper limit

Posterior on μ Posterior on μ

‘ex10_roostats_bayes_interval.C’



Bayesian parameter estimation

• Bayesian parameter estimate is the posterior mean

• Bayesian variance is the posterior variance 

Wouter Verkerke, NIKHEF

Mean= 
<x>

Variance = 
<x2>-<x>2

V̂ = (µ̂ −µ)2P(µ | N )∫ dµ

µ̂ = µP(µ | N )∫ dµ



Choosing Priors

• As for simple models, Bayesian inference always in involves a prior 
à now a prior probability density on your parameter

• When there is clear prior knowledge, it is usually straightforward to 
express that knowledge as prior density function

– Example: prior measurement of μ = 50 ± 10

– Posterior represents updated belief à It incorporates information from 
measurement and prior belief

– But sometimes we only want to publish result of this experiment, or there is no prior 
information. What to do?

Wouter Verkerke, NIKHEF

prior p(μ)

posterior 
p(μ|x0)

likelihood
L(x0|μ)



Choosing Priors

• Common but thoughtless choice: a flat prior
– Flat implies choice of metric. Flat in x, is not flat in x2

• Flat prior implies choice on of metric
– A prior that is flat in μ is not flat in μ2

– ‘Preferred metric’ has often no clear-cut answer. 
(E.g. when measuring neutrino-mass-squared, state answer in m or m2)

– In multiple dimensions even complicated (prior flat in x,y or is prior flat in r,φ?)

Wouter Verkerke, NIKHEF

prior p(μ)

posterior 
p(μ|x0)

likelihood
L(x0|μ) prior p(μ’)

posterior 
p(μ’|x0)

likelihood
L(x0|μ’)

distribution in μ distribution in μ2



Is it possible to formulate an ‘objective’ prior?

• Can one define a prior p(μ) which contains as little information as 
possible, so that the posterior pdf is dominated by the likelihood?

– A bright idea, vigorously pursued by physicist Harold Jeffreys in in mid-
20thcentury:

– This is a really really thoughtless idea, recognized by Jeffreys as such, but 
dismayingly common in HEP: just choose p(μ) uniform in whatever metric you 
happen to be using! 

• “Jeffreys Prior” answers the question using a prior uniform in a 
metric related to the Fisher information.

– Unbounded mean μ of gaussian: p(μ) = 1
– Poisson signal mean μ, no background: p(μ) = 1/√μ

• Many ideas and names around on non-subjective priors
– Advanced subject well beyond scope of this course.
– Many ideas (see e.g. summary by Kass & Wasserman), 

but very much an open/active in area of research
Wouter Verkerke, NIKHEF
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Sensitivity Analysis

• Since a Bayesian result depends on the prior probabilities, which are 
either personalistic or with elements of arbitrariness, it is widely 
recommended by Bayesian statisticians to study the sensitivity of the 
result to varying the prior.

• Sensitivity generally decreases with precision of experiment

• Some level of arbitrariness – what variations to consider in sensitivity 
analysis

Wouter Verkerke, NIKHEF 



Likelihood Principle

• As noted above, in both Bayesian methods and likelihood-ratio
based methods, the probability (density) for obtaining the data at 
hand is used (via the likelihood function), but probabilities for 
obtaining other data are not used!

• In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.

• This difference is captured by the Likelihood Principle*: 

If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two experiments 
should be identical.

Wouter Verkerke, NIKHEF 
[B.Cousins HPCP]



The “Karmen Problem”

• Simple counting experiment: 
– You expected precisely 2.8 background events 

with a Poisson distribution
– You count the total number of observed events N=s+b
– You make a statement on s, given Nobs and b=2.8

• You observe N=0!
– Likelihood: L(s) = (s+b)0 exp(-s-b) / 0! = exp(-s) exp(-b)

• Likelihood –based intervals
– LR(s) = exp(-s) exp(-b)/exp(-b)= exp(-s) à Independent of b!
– Bayesian integral also independent of factorizing exp(-b) term

• So for zero events observed, likelihood-based inference about 
signal mean s is independent of expected b. 

• For essentially all frequentist confidence interval constructions, the 
fact that n=0 is less likely for b=2.8 than for b=0 results in 
narrower confidence intervals for μ as b increases. 

– Clear violation of the L.P.



Likelihood Principle Example #2

• Binomial problem famous among statisticians 

• Translated to HEP: You want to know the trigger efficiency e. 
– You count until reaching n=400 zero-bias events, 

and note that of these, m=1 passed trigger. 

Estimate e = 1/400, compute binomial confidence interval for e.

– Your colleague (in a different sample!) counts zero-bias events until m=1 
have passed the trigger. She notes that this requires n=400 events. 

Intuitively, e=1/400 over-estimates e because she stopped just upon reaching 1 
passed event. (The relevant distribution is the negative binomial.)

• Each experiment had a different stopping rule. Frequentist confidence 
intervals depend on the stopping rule.

– It turns out that the likelihood functions for the binomial problem and the negative 
binomial problem differ only by a constant! 

– So with same n and m, (the strong version of) the L.P. demands same inference 
about e from the two stopping rules!

Wouter Verkerke, NIKHEF 
[B.Cousins HPCP]



Summary
• Maximum Likelihood

– Point and variance estimation
– Variance estimate assumes normal

distribution. No upper/lower limits

• Frequentist confidence intervals
– Extend hypothesis testing to composite hypothesis
– Neyman construction provides exact “coverage” 

= calibration of quoted probabilities
– Strictly p(data|theory)
– Asymptotically identical to likelihood ratio intervals

(MINOS errors, does not assume parabolic L,
but beware of the ‘regularity conditions’!)

• Bayesian credible intervals
– Extend P(theo) to p.d.f. in model parameters
– Integrals over posterior density à credible intervals
– Always involves prior density function

in parameter space
Wouter Verkerke, NIKHEF


