
Wouter Verkerke, NIKHEF

Model building 2 
Modelling distributions –

template based models or 
analytical models



Roadmap of this course

• Start with basics, gradually build up to complexity
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Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters
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Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 
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Discriminating observables & counting experiments

• HEP experimental data usually has many discriminating observables 
that carry information that can distinguish signal from background 
hypothesis

• In principle can use them all directly in an elaborate hypothesis test.
– But would need to formulate a model that describe the expected distribution of all 

of these à Complicated

– If expectations are uncertain (from simulation or theory) process of modeling 
becomes even more complex

• A pragmatic solution to reduce complexity is to split task in two
– Define empirical selection of events enriched in signal using one or more 

observable properties of the event (invariant masses, distributions, angles etc)
– Perform statistical test (hypothesis test, parameter estimation etc) on sample that 

reduced in size and in dimensionality of discriminating observables that are 
modeled

– Most extreme reduction of dimensionality is to zero à counting experiment 
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Discriminating observables & counting experiments

• Example 1 – Discrimination in selection stage only

s=0

s=5
s=10

s=15

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Poisson(N|s+b)

Statistical inference:
L(15|5) = 1.5 10-4

NB1: All discriminating power in selection step, 
none in inference step. This is a design choice!

NB2: Selection must be tuned on a ‘figure of merit’
usually a simplified statistical inference test



Modeling discriminating observables

• Example 2 – Discrimination in inference stage

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Nbkg*Uniform(x) +Nsig*Gaussian(x) 

Statistical inference:
L(data|hypo)=something

NB1: Most discrimination power in inference step. 
This is again design choice!

NB2: Optimal selection less critical

NB3: Correct description of selected sample
more complex



Modeling discriminating observables

• Example 2 – full dataset has one discriminating observable: x 

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Nbkg*Uniform(x) +Nsig*Gaussian(x) 

Statistical inference:
L(data|hypo)=something

NB1: Most discrimination power in inference step. 
This is again design choice!

NB2: Optimal selection less critical

NB3: Correct description of selected sample
more complex

Q: Which strategy is better?

A: Depends on how ‘better’ is defined?

For hypothesis testing ‘discovery of a new particle’

the ‘power’ of the test can be the same, but doesn’t need to be

Choice is real life largely dictated by practicalities

• How easy is it to formulate a description of the observables?

• How many observables are important?



Formulating probability models for discriminating observables

• For counting experiments could derive Poisson(N|μ) from first 
principles (‘random discrete events measured in fixed time interval)

• For experiments with discriminating observables, description should 
ideally also derive from underlying (physics) hypothesis/theory

– In many cases this is possible, but not always without assumptions. 

– Assumptions lead to uncertainties in predictions à we’ll revisit later how to deal 
with those.

• Example: common underlying principle in (signal) model is that 
discriminating observable is sum/average of many components

– E.g. light collected by photomultiplier has contributions from >>1 photons

– Tracks reconstructed in detector have contributions >>1 hits

– Central Limit Theorem: for large N à Can be analytically described by Gaussian

• In case there is no easy analytical solution à empirical models 
(polynomial) or numerical solution (simulation-based histogram)

Wouter Verkerke, NIKHEF



Mathematical formulation of models for observables

• Mathematical description for counting expt is probability model

• Mathematical description for distribution 
of discriminating observable is a probability density model:

P(N ) ≥ 0 ∀N P(N )
N=0

∞

∑ ≡1

f ( !x) ≥ 0 ∀
!
x f ( !x)d!x ≡1∫

f (x)dx ≡1∫ f (x, y)dxdy ≡1∫



Mathematical formulation of models for observables

• Mathematical description for counting expt is probability model

• Mathematical description for distribution 
of discriminating observable is a probability density model:

P(N ) ≥ 0 ∀N P(N )
N=0

∞

∑ ≡1

f ( !x) ≥ 0 ∀
!
x f ( !x)d!x ≡1∫

f (x)dx ≡1∫ f (x, y)dxdy ≡1∫

Note that f(x) itself is not a probability, but a probability density.

However any integral                is a probability (for x to be in [a,b])



Some examples of physics-inspired probability density models

Wouter Verkerke, NIKHEF

Gaussian
(anything in CLT regime)

Landau
(energy loss in matter)

Breit-Wigner
(resonant mass)

Exponential
(decay time)



Signal models are often convolutions!

• Observable distributions are often well described by convolutions 
of physics distributions with (experimental) resolution functions.

– Often can be calculated analytically, otherwise numerically use FFT

• Example 1: Resonance mass (x) detector resolution

• Example 2: Decay life time (x) detector resolution 

Wouter Verkerke, NIKHEF

(x)

(x) =

=



PDFs with multiple process contributions – aka mixture models 

• Analogous to the counting model Poisson(N|S+B), probability 
density models can describe the distribution of such hypothesis 
through simple addition

• Given a data sample D(x) of N 
independent identically distributed
observations  of x, the Likelihood is 

Wouter Verkerke, NIKHEF

f(x) = fsig Gaussian(x) + (1-fsig) Uniform(x)

If Gaussian(x) and Uniform(x)
are pdfs, then their sum is also
a pdf, provided the sum of the
coefficients is also 1

L( !x) = f (xi )
i=0...N
∏



PDFs with multiple process contributions 

• Note that the Likelihood L(x) of a probability density function f(x)
for a data sample D(x) with N entries only exploits the differential 
distribution in x, but not the event count N of the data

• In many cases the event count can also distinguish the S/B 
hypothesis (more events expected if signal is present). If so, 
the probability model for the event count can be explicitly included 
in the Likelihood (often called ‘extended likelihood’)

• In the common case of a signal and background, with a 
respective expected event S and B, 
one can reparameterize (fsig,Nexp) à (S,B)
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f(x) = fsig Gaussian(x) + (1-fsig) Uniform(x)

P(N) = Poisson(N | Nexp)

L(
!
x,N ) = f (xi | fsig )

i=0...N
∏ ⋅Poisson(N | Nexp )



PDFs with multiple process contributions 

• Note that the Likelihood L(x) of a probability density function f(x)
for a data sample D(x) with N entries only exploits the differential 
distribution in x, but not the event count N of the data

• In many cases the event count can also distinguish the S/B 
hypothesis (more events expected if signal is present). If so, 
the probability model for the event count can be explicitly included 
in the Likelihood (often called ‘extended likelihood’)

• In the common case of a signal and background, with a 
respective expected event S and B, 
one can reparameterize (fsig,Nexp) à (S,B)
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f(x) = S/(S+B)Gaussian(x) + B/(S+B)Uniform(x)

P(N) = Poisson(N | S+B)

L( !x,N ) = f (xi | S,B)
i=0...N
∏ ⋅Poisson(N | S + B)



Empirical probability models

• In case no description from first principles exists for a differential 
distribution, empirical or simulation-based models can be deployed

Wouter Verkerke, NIKHEF

Empirical models Simulation-based models

B(x) = a0+a1x+a2x2+a3x3… B(x) = histogram

Drawbacks: 
• Arbitrariness in parameterization,

e.g. which order to choose
for a polynomial

Drawbacks: 
• Quantization of model prediction in bins
• Poor modeling in regions 

with low simulation statistics



Modeling low-statistics simulation predictions

• For low-statistics simulation predictions, 
kernel estimation techniques can improve modeling substantially

• Procedure: 
– Assign a Gaussian probability density distribution to each simulated event.

– Sum Gaussian probability densities of all events

– Started from unbinned data à no binning effects

Wouter Verkerke, NIKHEF

Sample of events

Gaussian 
probability distributions 

for each event

Summed
probability distribution
for all events in sample



Modeling low-statistics simulation predictions

• Technique does not require that all Gaussian kernels have same 
width

• Improved procedure: ‘adaptive kernel’
– Adjust with of Gaussian kernels depending on local event density

– High density à narrow kernels à preserve more detail

– Low density à wide kernels à promote smoothness

Wouter Verkerke, NIKHEF

Static Kernel
(with of all Gaussian identical)

Adaptive Kernel
(width of all Gaussian depends

on local density of events)

Kernel estimation is a simplified form of a ‘Gaussian processes’ techniques
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Statistical methods 2 
Adapting statistical methods to use with distributions: 

test statistics as ordering principle, likelihood 
ratios, contrast with Bayesian methods, the likelihood 

principle. Practical aspects of toy MC sampling



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods



Summary on statistical test with simple hypotheses

• So far we considered simplest possible experiment we can do: 
counting experiment

• For a set of 2 or more completely specified (i.e. simple) hypotheses 

• In principle, any potentially complex measurement (for Higgs, SUSY, 
top quarks) can ultimately take this a simple form.
But there is some ‘pre-work’ to get here – examining (multivariate) 
discriminating distributions à Now try to incorporate that 
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à Given probability models P(N|bkg), and P(N|sig) 
we can calculate P(Nobs|Hx) under either hypothesis

à With additional information on P(Hi) we can also calculate P(Hx|Nobs)

[Recap]



Back to Hb/Hsb - Formulating evidence for discovery of Hsb

• Given a scenario with exactly two competing hypotheses
• In the Bayesian school you can cast evidence as an odd-ratio

Wouter Verkerke, NIKHEF

Oprior ≡
P(Hsb )
P(Hb)

=
P(Hsb )
1−P(Hsb )

If p(Hsb)=p(Hb) à Odds are 1:1

Oposterior ≡
L(x |Hsb )P(Hsb )
L(x |Hb )P(Hb )

=
L(x |Hsb )
L(x |Hb )

Oprior

‘Bayes Factor’ K multiplies prior odds

P(data|Hb)=10-7

P(data|Hsb)=0.5If                              K=2.000.000 à Posterior odds are 2.000.000 : 1

[Recap]



Formulating evidence for discovery

• In the frequentist school you restrict yourself to P(data|theory)
and there is no concept of ‘priors’

– But given that you consider (exactly) 2 competing hypothesis,
very low probability for data under Hb lends credence to ‘discovery’ of Hsb
(since Hb is ‘ruled out’). Example

• Given importance to interpretation of the lower probability, it is 
customary to quote it in “physics intuitive” form: Gaussian σ.

– E.g. ‘5 sigma’ à probability of 5 sigma Gaussian fluctuation =2.87x10-7

• No formal rules for ‘discovery threshold’
– Discovery also assumes data is not too unlikely under Hsb. If not, no discovery,

but again no formal rules (“your good physics judgment”)
– NB: In Bayesian case, both likelihoods low reduces Bayes factor K to O(1)    

Wouter Verkerke, NIKHEF

P(data|Hb)=10-7

P(data|Hsb)=0.5 “Hb ruled out” à “Discovery of Hsb”

[Recap]



Working with Likelihood functions for distributions

• How do the statistical inference procedures change 
for Likelihoods describing distributions?

• Bayesian calculation of P(theo|data) they are exactly the same.
– Simply substitute counting model with binned distribution model 
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P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

P(Hs+b |
!
N ) =

Poisson
i
∏ (Ni | "si + "bi )P(Hs+b )

Poisson
i
∏ (Ni | "si + "bi )P(Hs+b )+ Poisson

i
∏ (Ni | "bi )P(Hb )

Simply fill in new Likelihood function
Calculation otherwise unchanged



Working with Likelihood functions for distributions

• Frequentist calculation of P(data|hypo) also unchanged, 
but question arises if P(data|hypo) is still relevant?

• L(N|H) is probability to obtain exactly the histogram observed.

• Is that what we want to know? Not really.. We are interested in 
probability to observe any ‘similar’ dataset to given dataset,
or in practice dataset ‘similar or more extreme’ that observed data

• Need a way to quantify ‘similarity’ or ‘extremity’ of observed data
Wouter Verkerke, NIKHEF

L(
!
N |Hb ) = Poisson(

i
∏ Ni | "bi )

L(
!
N |Hs+b ) = Poisson(

i
∏ Ni | "si + "bi )



Working with Likelihood functions for distributions

• Definition: a test statistic T(x) is any function of the data x
• We need a test statistic that will classify (‘order’) all possible 

observations in terms of ‘extremity’ (definition to be chosen by 
physicist)

• NB: For a counting measurement the count itself is already 
a useful test statistic for such an ordering (i.e. T(x) = x)

Wouter Verkerke, NIKHEF

Test statistic T(N)=Nobs orders observed
events count by estimated signal yield

Low N à low estimated signal
High N à large estimated signal



• Now make a measurement N=Nobs (example Nobs=7)
• Definition: p-value: 

probability to obtain the observed data, or more extreme
in future repeated identical experiments

– Example: p-value for background-only hypothesis

P-values for counting experiments

)23.0()0;( =+= ò
¥

obsN
b dNbNPoissonp

s=0

s=5
s=10

s=15



Ordering distributions by ‘signal-likeness’ aka ‘extremity’

• How to define ‘extremity’ if observed data is a distribution
Counting Histogram

Observation

Median expected
by hypothesis

Predicted distribution
of observables

Nobs=7

Nexp(s=0) = 5
Nexp(s=5) = 10

Which histogram is more ‘extreme’?



The Likelihood Ratio as a test statistic

• Given two hypothesis Hb and Hs+b the ratio of likelihoods
is a useful test statistic

• Intuitive picture: 

à If data is likely under Hb,                à If data is likely under Hs+b
L(N|Hb) is large,                                 L(N|Hs+b) is large,
L(N|Hs+b) is smaller                            L(N|Hb) is smaller 
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λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

λ(
!
N ) = small

large
= small λ(

!
N ) = large

small
= large



Visualizing the Likelihood Ratio as ordering principle

• The Likelihood ratio as ordering principle

• Frequentist solution to ‘relevance of P(data|theory’) is to order all 
observed data samples using a (Likelihood Ratio) test statistic

– Probability to observe ‘similar data or more extreme’ then amounts to 
calculating ‘probability to observe test statistic λ(N) as large or larger than the 
observed test statistic λ(Nobs)

Wouter Verkerke, NIKHEF

L(N|Hs+b)=small
L(N|Hb)=large

L(N|Hs+b)=soso
L(N|Hb)=soso

L(N|Hs+b)=large
L(N|Hb)=small

λ(N)=0.0005 λ(N)=0.47 λ(N)=5000



The distribution of the test statistic

• Distribution of a test statistic is generally not known
• Use toy MC approach to approximate distribution

– Generate many toy datasets N under Hb and Hs+b
and evaluate λ(N) for each dataset

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for 
data sampled under Hs+b

Distribution of λ for 
data sampled under Hb

λobs

p− value = f (λ |Hb )
λobs

∞

∫



The distribution of the test statistic

• Definition: p-value: 
probability to obtain the observed data, or more extreme
in future repeated identical experiments
(extremity define in the precise sense of the (LR) ordering rule)

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for 
data sampled under Hs+b

Distribution of λ for 
data sampled under Hb

λobs

p− value = f (λ |Hb )
λobs

∞

∫



Likelihoods for distributions - summary

• Bayesian inference unchanged

à simply insert L of distribution to calculate P(H|data)

• Frequentist inference procedure modified

à Pure P(data|hypo) not useful for non-counting data
à Order all possible data with a (LR) test statistic in ‘extremity’
à Quote p(data|hypo) as ‘p-value’ for hypothesis

Probability to obtain observed data, or more extreme, is X%   

Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

‘Probability to obtain 13 or more 4-lepton events
under the no-Higgs hypothesis is 10-7’

‘Probability to obtain 13 or more 4-lepton events
under the SM Higgs hypothesis is 50%’



The likelihood principle

• Note that ‘ordering procedure’ introduced by test statistic 
also has a profound implication on interpretation

• Bayesian inference only uses the Likelihood of the observed data

• While the observed Likelihood Ratio also 
only uses likelihood of observed data.

• Distribution f(λ|N), and thus p-value, also uses likelihood of 
non-observed outcomes (in fact Likelihood of every possible 
outcome is used) Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )



Likelihood Principle

• In Bayesian methods and likelihood-ratio based methods, the 
probability (density) for obtaining the data at hand is used (via the 
likelihood function), but probabilities for obtaining other data are 
not used!

• In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.

• This difference is captured by the Likelihood Principle*: 

If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two experiments 
should be identical.

Wouter Verkerke, NIKHEF 

“Does it matter what the observable outcome of other experiments is?”

“Suppose you learn that your observation is an outlier, should that

somehow be factored into your conclusions?” 



Generalizing to multiple dimensions

• Can also generalize likelihood models to distributions in multiple
observables

• Neither generalization (binnedàcontinuous, oneàmultiple
observables) has any further consequences for Bayesian or 
Frequentist inference procedures 

Wouter Verkerke, NIKHEF

L(!x) = f (xi )
i
∏ L(!x, !y) = f (xi, yi )

i
∏



The Likelihood Ratio test statistic as tool for event selection

• Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem

• In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always 
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)
with a likelihood ratio

• So far we have exploited λ to calculate a frequentist p-value
now explore properties ‘cut on λ’ as basis of (optimal) event 
selection Wouter Verkerke, NIKHEF

λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )



The distribution of the test statistic

• Distribution of a test statistic is generally not known
• Use toy MC approach to approximate distribution

– Generate many toy datasets N under Hb and Hs+b
and evaluate λ(N) for each dataset

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for 
data sampled under Hs+b

Distribution of λ for 
data sampled under Hb

λobs

p− value = f (λ |Hb )
λobs

∞

∫

(



Intermezzo – Generating toy data

• Two approaches to obtaining simulated data
• First approach is 

‘Physics Monte Carlo Chain’, 
described earlier

– Time consuming, but
injects detailed knowledge
about physics, detector,
output is full collision
information, and relation
to underlying theory details

• Alternative approach is
sample sampling the
probability model ‘toy MC’

– Fast (generally), only requires access to probability model

– Can only produce datasets with observables that are described by the 
probability model à Sufficient to study distribution of test statistics

Wouter Verkerke, NIKHEF



How do you efficiently generate a toy dataset from a probability model?

• Simplest method is accept/reject sampling

1) Determine maximum of function fmax

2) Throw random number x

3) Throw another random number y

4) If y<f(x)/fmax keep x, 
otherwise return to step 2)

– PRO: Easy, always works

– CON: It can be inefficient if function 
is strongly peaked.
Finding maximum empirically 
through random sampling can
be lengthy in >2 dimensions

Wouter Verkerke, NIKHEF

x

y

fmax



How do you efficiently generate a toy dataset from a probability model?

• Simplest method is accept/reject sampling

1) Determine maximum of function fmax

2) Throw random number x

3) Throw another random number y

4) If y<f(x)/fmax keep x, 
otherwise return to step 2)

– PRO: Easy, always works

– CON: It can be inefficient if function 
is strongly peaked.
Finding maximum empirically 
through random sampling can
be lengthy in >2 dimensions

Wouter Verkerke, NIKHEF

x

y

fmax
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Toy MC generation – Inversion method

• Fastest: function inversion

1) Given f(x) find inverted function F(x) 
so that f( F(x) ) = x

2) Throw uniform random number x

3) Return F(x)

– PRO: Maximally efficient
– CON: Only works for invertible functions

Take –log(x)
x

-ln(x)

Exponential
distribution
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Toy MC Generation – importance sampling

• Hybrid: Importance sampling

1) Find ‘envelope function’ g(x) 
that is invertible into G(x)
and that  fulfills g(x)>=f(x) 
for all x

2) Generate random number x 
from G using inversion method

3) Throw random number ‘y’
4) If y<f(x)/g(x) keep x, 

otherwise return to step 2

– PRO: Faster than plain accept/reject sampling
Function does not need to be invertible

– CON: Must be able to find invertible envelope function

G(x)

y

g(x)

f(x)



Toy MC Generation – importance sampling in >1D

• General algorithms exists that can construct empirical envelope 
function 

– Divide observable space recursively into smaller boxes and take uniform 
distribution in each box

– Example shown below from FOAM algorithm

Wouter Verkerke, NIKHEF



Toy MC Generation – importance sampling in >1D

• For binned distributions, can generate content of each bin on toy 
dataset independently, using a Poisson process

• Note that efficient generation of Poisson random number relies on 
combination of importance sampling (for small μ, using 
exponential envelope, for large μ using Cauchy distribution)   

Wouter Verkerke, NIKHEF

L(
!
N |Hs+b ) = Poisson(

i
∏ Ni | "si + "bi ))



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods

Relation of test statistics to event selection



Deciding on a split 

• HEP data analysis often a 
2-step process: 

first selection, 
then inference

• Focus in this course on inference, but Likelihood Ratio as test 
statistics shows that there is a general optimal solution for any event 
selection problem: the ratio will order all event by signal-likeness

• Hence if we can construct λ, a selection defined by λ>λc will always 
be optimal for some stated level of desired purity

Wouter Verkerke, NIKHEF

λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )



The Likelihood Ratio test statistic as tool for event selection

• Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem

• In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always 
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)
with a likelihood ratio

• So far we have exploited λ to calculate a frequentist p-value
now explore properties ‘cut on λ’ as basis of (optimal) event 
selection Wouter Verkerke, NIKHEF

λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )



Event selection

• The event selection problem:
– Input: Two classes of events “signal” and “background”

– Output: Two categories of events “selected” and “rejected”

• Goal: select as many signal events as possible,
reject as many background events as possible

• Note that optimization goal as stated is ambiguous. 
– But can choose a well-defined by optimization goal by e.g. fixing desired 

background acceptance rate, and then choose procedure that has highest 
signal acceptance.

• Relates to “classical hypothesis testing”
– Two competing hypothesis (traditionally named ‘null’ and ‘alternate’)

– Here null = background, alternate = signal

Wouter Verkerke, NIKHEF



Terminology of classical hypothesis testing

• Definition of terms
– Rate of type-I error = a
– Rate of type-II error = b
– Power of test is 1-b

• Treat hypotheses 
asymmetrically 

– Null hypo is usually special à Fix rate of type-I error
– Criminal convictions: Fix rate of unjust convictions 
– Higgs discovery: Fix rate of false discovery
– Event selection: Fix rate of background that is accepted

• Now can define a well stated goal for optimal testing
– Maximize the power of test (minimized rate of type-II error) for given a
– Event selection: Maximize fraction of signal accepted

Wouter Verkerke, NIKHEF



The Neyman-Pearson lemma

• In 1932-1938 Neyman and Pearson developed a 
theory in which one must consider competing hypotheses

– Null hypothesis (H0) = Background only

– Alternate hypotheses (H1) = e.g. Signal + Background

and proved that
• The region W that minimizes the rate of the type-II error (not 

reporting true discovery) is a contour of the Likelihood Ratio

• Any other region of the same size will have less power

Wouter Verkerke, NIKHEF



The Neyman-Pearson lemma

• Example of application of NP-lemma with two observables

• Cut-off value c controls type-I error rate (‘size’ = bkg rate)
Neyman-Pearson: LR cut gives best possible ‘power’ = signal eff. 

• So why don’t we always do this? (instead of training neural 
networks, boosted decision trees etc)

Wouter Verkerke, NIKHEF

x
y y

x

f(x,y|Hs) f(x,y|Hb)
f(x,y|Hs)

f(x,y|Hs+b)
>c

‘ex03.C’



Why Neyman-Pearson doesn’t always help

• The problem is that we usually don’t have explicit formulae for the 
pdfs

• Instead we may have Monte Carlo samples for signal and  
background processes

– Difficult to reconstruct analytical distributions of pdfs from MC samples, 
especially if number of dimensions is large

• If physics problem has only few observables can still estimate 
estimate pdfs with histograms or kernel estimation,

– But in such cases one can also forego event selection and go straight to 
hypothesis testing / paramater estimation with all events

Wouter Verkerke, NIKHEF
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Approximation of true f(x|b)



Hypothesis testing with a large number of observables

• When number of observables is large follow different strategy
• Instead of aiming at approximating p.d.f.s f(x|s) and f(x|b) aim to 

approximate decision boundary with an empirical parametric form 

Wouter Verkerke, NIKHEF
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Empirical parametric forms of decision boundaries

• Can in principle choose any type of Ansatz parametric shape

• Goal of Ansatz form is estimate of a ‘signal probability’ for every 
event in the observable space x (just like the LR)

• Choice of desired type-I error rate (selected background rate), can 
be set later by choosing appropriate cut on Ansatz test statistic.

accept
H0

H1

accept
H0

H1

accept
H0

H1

Rectangular cut Linear cut Non-linear cut

)()()( iijj cxcxxt --= qq iijj xaxaxt ×+×=)( ...)( ++×= xAxxaxt !!!!



Machine learning and all that

• A wide range of modern tools exist to perform supervised learning 
of a multivariate discriminant with the aim to approximate the 
optimal Neyman-Pearson discriminant.

– Deep Learning, Boosted Decision Trees, GAN’s etc etc.

• Variation in
– Ansatz (empirical parametric form 

of discriminant)

– Learning process 
(error back propagation, Bayesian)

• Commonality in
– Input (labeled simulation samples)

– Output (single function that maps 
signal probability)

• In all cases output functions is functionally comparable to 
likelihood ratio discriminant (modulo some trivial transformations)

Wouter Verkerke, NIKHEF



• In the limit of an optimal discriminant – the event selection step is 
effectively (and only) a reduction of dimensionality of the data without 
loss of information in this data compression

• In case the full discriminant distribution
is tested à no loss of information

– But need for pdf that model distribution

• But can also select high-signal region
and perform simplified inference

– e.g. counting model in that region

Event selection as dimensionality reduction



Event selection as dimensionality reduction

• In the limit of an optimal discriminant – the event selection step is 
effectively (and only) a reduction of dimensionality of the data without 
loss of information in this data compression

• In case the full discriminant distribution
is tested à no loss of information

– But need for pdf that model distribution

• But can also select high-signal region
and perform simplified inference

– e.g. counting model in that region

Note that this is generally only optimal when you have 

- a ‘fixed’ signal and background prediction
- a linear signal strength (“μ*S+B”) in the entire phase space

If your signal and background shapes have significant uncertainties à
you should investigate, not assume

If there are significant interference effects with the signal
(Effective Field Theory models, Offshell Higgs measurements)
à you should investigate, you should investigate, not assume



Choosing the ‘best’ high-signal region

• A common scenario for searches in a low-statistics 
regime is to perform a simplified analysis

1. Train MVA to obtain discriminant D

2. Apply a cut on D

3. Perform only a counting analysis

• And a common question is then – what is the ‘optimal cut on D’?
– To answer question, a ‘figure of merit’ (FOM) must be chosen that quantifies 

the optimality of the selection. 

– The FOM for a search is usually the expected signal significance.
– A ‘traditional’ choice is FOM=s/√b. For low-statistic searches s/√b is a bad 

choice! It assumes Gaussian distribution, whereas the true distribution is 
Poisson, which is quite unlike Gaussian especially in the tails at low N 

• A better, and equally easy to use, equation exists based on a Poisson calculation

– NB: the question arise due to choice for simplified counting in step 3).
If a probability density model is used for the analysis of the selected data,
then the answer is always ‘the full range of the discriminant’

Wouter Verkerke, NIKHEF



A better FOM for discovery - the ‘Expected Poisson Z’

• The expected counting significance for a Poisson process is 
analytically calculable:

• For discovery, the traditional FOM s/√b shows significant 
deviations from the ‘exact’ expected Poisson significance at low b 

•

Wouter Verkerke, NIKHEF
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