

Time is of the essence

Handhart googligi Signa Weig Field ickness ront-End Nois aterial Budget POWE Flect Siter P Fast Timing

FASTER Meeting 20th Sep. 2024

Working on Detector R&D

Faster Meeting

2

20th Sep. 2024

Fast timing, past

- Timing for Particle physics experiments was *ignored* for a long time
- Timing of currently installed LHC detectors
 - Bunch crossings need to be separable \rightarrow 25 ns time resolution sufficient

Tab.: Specifications	of Timepix3	and VeloPix.	Taken from
LHCb velo upgrade	TDR (2013))	

Specification	Timepix3	VeloPix
pixel dimension matrix size	$\begin{array}{c} 55\times55\mu\mathrm{m}^2\\ 256\times256\end{array}$	$\begin{array}{c} 55 \times 55 \mu \mathrm{m}^2 \\ 256 \times 256 \end{array}$
timewalk	< 25 ns	< 25 ns
Time over Threshold range	10 bit	6 bit (calibration mode only)
leakage current compensation	20 nA	20 nA
(per pixel)		
Time stamp resolution	1.6 ns	25 ns

Fast timing, future

- Time as an important parameter to embed in the analysis
 - Time of Flight based particle identification
 - Further physics analysis
 - 4D-Tracking
 - Improved tracking performance
 - Reduced tracking complexity
 - \rightarrow All require O(30 ps) time resolution

x [mm]

What is actually measured

• Measured is the time when a gathered charge signal crosses a threshold

Faster Meeting

Moving beyond digital limits

- Older ASICs
 - Timepix3 $\sigma_{TDC} \sim 450$ ps
- Newer ASICs
 - Timepix4 σ_{TDC} ~ 62 ps
- Next goal:
 - Picopix $\sigma_{TDC} < 20$ ps

- Impact of other contributions begin to be significant
 - Only capacitive load from sensor $\sigma_{\text{Front-end}} \sim 100 \text{ ps}$ -

Injected charge [ke]

15

10

TDC resolution

56-62 ps

Electron

20

collecting

25

14

Uwe Kraemer

100

Different Approaches to Fast Timing Sensors

- Decision on what to improve/prioritize drives different sensor designs
- 3D sensors
 - Large signal generation

- Monolithic Active Pixel Sensors (MAPS)
 - Low capacitance

- Low Gain Avalanche Detectors (LGAD)
 - In-sensor amplification

20th Sep. 2024

Gain in sensors

- Electron-hole pairs produced by collisions with charged particles
- Can we induce this with the drifting charge? Yes!
 - Adding specific highly doped layers produces a strong electric field
 - Electrons accelerate enough to produce more Electron-hole pairs via collisions
 - Cascading effect until field reduces
 - Position of layer, doping concentration etc. all influence gain
 - Low Gain Avalanche = O(10)

Uwe Kraemer

LGAD Pixel (Standard)

- Gain implants require electrical isolation and
 - Region without gain O(100 μ m)
 - Large pixels to reach high fraction of active region (Fill Factor)
 - $\rightarrow\,$ Large pixels with great timing
 - Excellent for timing layers
 - Insignificant spatial resolution
 - \rightarrow Not usable for 4D tracking

Can we make the isolation somehow smaller?

LGAD Pixel (Trenches)

- Cutting one or multiple gaps into silicon
 - Filled with silicon oxide as isolation
- Trench width and distance to gain implant ~ O(1µm)
 - Small pixels possible (55µm pitch)
- Devices installed on TPX4 ASIC.

 \rightarrow First small pixel LGAD with fully integrated readout

20th Sep. 2024

Testing of Trench-Isolated-LGAD (TI-LGAD)

- Investigation into in-pixel structures
 - Area close to the trenches
- Both devices show reduced gain towards the edges

20th Sep. 2024

Intrapixel ToT[25ns]

Nik hef

Uwe Kraemer

Testing of Trench-Isolated-LGAD (TI-LGAD)

- Investigation into in-pixel structures
 - Area close to the trenches
- Both devices show reduced gain towards the edges
- Double trench device has efficiency drop in the corners
- Lowers effective Fill Factor and usable area to the center

21

20th Sep. 2024

-20

-10

in-pixel x ²⁰[µm]

Nik hef

Testing of Trench-Isolated-LGAD (TI-LGAD)

- Time resolution varies a lot between the different areas inside the pixel
- Limiting data to the central area reaches a time resolution of **132 ps** before clock corrections for the double trench

Conclusion and Outlook

- Timing requirements have increased by ~1000.
- Timing itself has many aspects and levers for optimization that interplay with one another.
- Small pixel TI-LGAD can achieve excellent time resolution. Without clock correction O(130 ps) with full integration.

Uwe Kraemer

- Issues with gain towards pixel edges reduces effective area.
- Unexpected loss of efficiency for double trench device at the corners.
 - Hope to achieve sub 100 ps time resolution in central area.
 - Investigate and optimize area with good gain performance.

Backup slides

Nikhef

Faster Meeting

2

Uwe Kraemer

20th Sep. 2024

Trench comparison with planar

- Loss of efficiency in double trench not visible in single trench
- Also not visible in the planar sensor
- Unknown what causes this. Some ideas as to the cause, to be investigated

26

Nik[hef

Signal rise time

- Jitter depends on front-end noise and therefore capacitance
- For the same amount of noise a fast rising signal is impacted less for its time resolution

