CLUSTERING METHODS FOR HIGH-LUMINOSITY

ANDREJ SARNATSKIY

MOTIVATION

- Challenges to get data from chips to trigger farm
 - Decrease data rate (compression)
 - Distinguish PV events during high pile-up (timing)
 - Apply corrections as soon as possible for improved reconstruction

~ 1.6 Tbps

- What corrections can be applied and where ?
 - e.g. timewalk correction or hit interpolation
- Being part of both R&D and LHCb, analysis is done both on

LHCb simulation of run5 and the current hardware.

Courtesy: R. E. Geertsema

DATA PROCESSING

- Attempt to reduce data rate by rejection in the ASICs
 - Uncertainty of hits, e.g. multiple particles mimicking a cluster
 - No possibility of correcting data afterwards
 - Is the system reliable for the lifetime of U2?
 - Current bit structure of TimePix4 still available
- The alternative is to apply corrections down the road @ FPGA
 - Possibility of combining and correcting pixel hit to clusters
 - Firmware is adjustable

Reference to Xavi Llopart's presentation: https://indico.cern.ch/event/1381444/

Interesting methodology exists already: <u>https://doi.org/10.1016/j.nima.2016.05.077</u>

LHCB UPGRADE 2 SIMULATION

- Using LHCb simulation to analyse impact of algorithms
- Local (chip) coordinates needed
- Failed to use existing functions within LHCb software
- No geometry information found

STRUGGLE OF DUALITY

- Either run the LHCb simulation ones, then do analysis/transformations later
- Or implement additional code in the simulation

OFFLINE ANALYSIS

- Global to local mapping
- Columns and rows aligned,

reflected if needed

- Additional micro alignment applied
- Source for systematic uncertainty

MICROALIGNMENT

The error is plotted between the centre of the

column/row x_i , y_i and the average of hits in that

column/row $\overline{c_i}$, $\overline{r_i}$

CLUSTERING INTERPOLATION

- Three methods tested:
 - □ Charge weighted center of gravity (CoG)
 - Binary

Every pixel in cluster has equal weight

Semi-binary

Pixel with highest collected charge is Main pixel (M),

others are Spectators (S). Different ratio's (M/S) tested.

CLUSTERING INTERPOLATION

- Low statistic: 10 PV events, O(200,000) hits
- First pixels are clustered by neighbourhood approximation

35

34

§ 33

32

31

233

234

Later simulation truth information used

• All results are work in progress. Additional checks are still being made.

- Different (M/S) ratio's tested:
 - For different cluster size's

Some residuals are of order ~ 2000um

Caused either by the alignment or huge clusters

Filtering out unphysical results shows better resolution

If |residuals| > 300 um filtered out:

- Sanity check
- Local residuals, <u>single</u> pixel clusters unfiltered

|res|>200um filtered

13

Local residuals, double pixel clusters |res|>200um filtered

150 Ó 50 100 200 Semi-binary, col Semi-binary, row 50 100 150 200 Ó Binary, col Binary, row -50 Ó 50 100 150 200 Residual / [um] 20/09/2024 14

CoG, col

CoG. row

Residual of MC true hit and pixelcluster average, M/S=[2,1]

within 2x2

RESULTS

3 pixel hits,

within 1x3

Local residuals, all clusters

|residual| > 200 um filtered out

17

- Also angular residuals are considered: $(rd\theta, rd\phi)$
 - Residuals calculated as projections on the chip:
 - $rd\theta$ is approximated as $d\rho$
 - $rd\phi$ is approximated as $\rho d\phi$

where r is the global radius and ρ is the radius in XY-plane

However the global coordinates are used for these residuals, see slide 9.

CAVEATS

Apart from the micro alignment, additional systematic deviation found in simulation. Cause unknown.

500

750

1000

Chip 0 (mod24): [dx,dy] = [+0.1, 0]Chip 1 (mod24): [dx,dy] = [+0.25, 0] Chip 2 (mod24): [dx,dy] = [+0.40, 0] Chip 11 (mod24): [dx,dy] = [0, -0.27] Chip 12 (mod24): [dx,dy] = [-0.1, 0] Chip 13 (mod24): [dx,dy] = [-0.25, 0] Chip 14 (mod24): [dx,dy] = [-0.40, 0] Chip 23 (mod24): [dx,dy] = [0, +0.27]

CAVEATS

- Apart from the micro alignment, additional systematic deviation found in simulation.
 Cause unknown.
- These results depend on the way pixel hits are and charge sharing is simulated.

CAVEATS

- Apart from the micro alignment, additional systematic deviation found in simulation.
 Cause unknown.
- These results depend on the way pixel hits and charge sharing are/is simulated.
- Clear indication that some code needs to run online

21

OUTLOOK

- Implement detailed timing in simulation
 - \rightarrow time-weighted clustering
- Investigating impact of digitization (bit allocation),

e.g. in LHCb simulation and/or Allpix2

Can timing information improve spatial resolution, or vice versa?

- Track reconstruction information can be fed back to cluster calculation to improve resolution
- Develop firmware to test algorithms during test beam

THANK YOU FOR YOUR TIME AND ATTENTION

BACK UP

TIMING AND TIMEPIX

26

GLOBAL COORDINATES

MICRO ALIGNMENT

every 5th row/column plotted

Before

After

MICRO ALIGNMENT

Before

Chip# mod(24): 0

Chip# mod(24): 1

Chip# mod(24): 23

-1.0

-0.5 0.0

x position / [mm]

0.5

1.0 1.5 2.0

-2.0 -1.5

Local True MC hits, column 0

Before

After

MICRO ALIGNMENT

255th row

