# Timepix4 time resolution iLGAD

Daan Oppenhuis doppenhu@nikhef.nl— FASTER summer meeting Maastricht — 20 September 2024

4 1 190



# Timepix4: Hybrid pixel detector readout ASIC



D. Oppenhuis

FASTER summer meeting Maastricht

## Timepix4:

- Developed by CERN, Nikhef, and IFAE
- 448×512 pixels, 55×55  $\mu$ m<sup>2</sup> pitch
- Time-bin size of 25 ns/128 = **195 ps**





# Time measurement in Timepix4

- Each superpixel has a Voltage-Controlled Oscillator  $\bullet$
- VCO runs at 640 MHz  $\rightarrow$  1.56 ns
- Four phase shifted copy's
- Optimal TDC resolution: 195 ps/ $\sqrt{12}$  = 56 ps
- VCO is stable, but frequency fluctuations over pixel matrix



## FASTER summer meeting Maastricht





Fine ToA

SPixel

Ultra-fine ToA code = 0

*n* + 1

п

20 September 2024

<u>*n*</u> + 2

| 640 MHz      |
|--------------|
|              |
|              |
|              |
|              |
|              |
| X            |
|              |
|              |
| -Stop        |
|              |
| 1            |
|              |
| = 0b1110     |
| <i>n</i> + 3 |







# Testbeam august this year

- 180 GeV/c mixed beam at CERN SPS
- Eight telescope planes with n-on-p planar silicon sensors:
  - 4 x 300 µm sensors for spatial resolution (angled)
  - 4 x 100 µm sensors for time resolution







hitmap N18 300 µm



hitmap N35 100 µm



hitmap N33 300 µm









# **Telescope configuration**



# Overview 100 um planar

- 100 µm n-on-p sensors for time resolution
- Small cluster size
- Working on problem with equalization:
- Many pixels masked
- Bias voltage 200V Threshold 1000e



7





# Single plane time resolution 100 um



#### FASTER summer meeting Maastricht

## High charge signal



## **Time resolution**

- Every superpixel, a group of 8 pixels, has 1 VCO
- VCO is stable, but frequency fluctuations over pixel matrix





### D. Oppenhuis

#### 20 September 2024





Nikhef

- area of the matrix
- σt After Timewalk+VCO corrections: ~151 ps



#### FASTER summer meeting Maastricht









FASTER summer meeting Maastricht





# Inverted LGAD on Timepix4 as DUT

- Low-gain avalanche diodes (LGADs) use charge multiplication to deliver larger input signals
- Tested 250 µm thick iLGADs with 55/110 µm pitch (Tpx3 sized)
- Small pixel size cannot be achieved in standard LGAD technology (without losing efficiency)
- Inverted LGADs (iLGADs) solve this by placing the gain layer on the backside
- Sensors produced by Micron and provided by Glasgow University



A. Doblas et al Sensors 2023, 23, 3450 [DOI: <u>10.3390/s23073450</u>]

### FASTER summer meeting Maastricht







# Overview 250 um iLGAD measurement

- Large cluster size at perpendicular beam incidence
- We suspect due to bipolar signals in neighboring pixels



#### FASTER summer meeting Maastricht







# Time resolution for perpendicular tracks

- Time-resolution improves with a higher bias-voltage
- After Timewalk+VCO corrections: ~350 ps

![](_page_13_Figure_3.jpeg)

#### FASTER summer meeting Maastricht

![](_page_13_Picture_6.jpeg)

time resolution vs biasvoltage

![](_page_13_Figure_8.jpeg)

![](_page_13_Picture_11.jpeg)

# Grazing angle measurements

- Grazing angle measurement used to study time resolution as function of depth in the sensor
- Selection of clusters without δ-rays
- MCP as time reference
- Operated at different biasvoltages and thresholds

![](_page_14_Figure_5.jpeg)

![](_page_14_Figure_9.jpeg)

20 September 2024

Nik hef

# Timewalk+drift correction per depth

- the slope of the curve is flatter

![](_page_15_Figure_4.jpeg)

## FASTER summer meeting Maastricht

![](_page_15_Picture_9.jpeg)

# Time resolution as function of depth

- Timewalk correction has more effect close to read-out electrode
- Time resolution seems best at 70 µm depth
- Shape of the time resolution curve depends on threshold
- Best time resolution at low threshold

![](_page_16_Figure_5.jpeg)

## Time resolution vs depth

![](_page_16_Figure_10.jpeg)

Time resolution vs depth

![](_page_16_Figure_12.jpeg)

FASTER summer meeting Maastricht

![](_page_16_Picture_15.jpeg)

## Future research

- Probe larger parameter space of iLGADs (threshold, voltage)
- Use the non-gain region of the iLGAD for comparison
- Investigation of correlations in timing in Timepix4 ASIC using grazing angle tracks
- Understand why the time-resolution is worse close to the gain layer

D. Oppenhuis

![](_page_17_Picture_7.jpeg)

# **BACK-UP SLIDES**

# Contact: doppenhu@nikhef.nl

![](_page_18_Picture_2.jpeg)

D. Oppenhuis

## FASTER summer meeting Maastricht

![](_page_18_Picture_6.jpeg)

## Conclusion

- Planar 100 um:
- Perpendicular time resolution: **151 ps**
- iLGAD 250 um:
- Perpendicular resolution: ~ 350 ps
- Grazing resolution:~ 360 ps

![](_page_19_Picture_9.jpeg)

# Angle scan

![](_page_20_Figure_1.jpeg)

### FASTER summer meeting Maastricht

D. Oppenhuis

21

![](_page_20_Picture_6.jpeg)

# Plane assemblies (all Timepix4v2)

- Eight telescope planes with n-on-p planar silicon sensors:
  - 4 x 300 µm sensors for spatial resolution (angled)
  - 4 x 100 µm sensors for time resolution (perpendicular)
  - Sensor upgrades are anticipated (LGAD, 3D, ...)
- Several DUT assemblies:
  - 50 μm, 100 μm, and 200 μm n-on-p planar silicon
  - 300 µm p-on-n
  - 2 x 250 µm iLGAD sensor 55 and 110 µm pitch
  - Cooled using glycol at 20 °C

![](_page_21_Figure_10.jpeg)

![](_page_21_Picture_12.jpeg)

FASTER summer meeting Maastricht

![](_page_21_Figure_15.jpeg)

![](_page_21_Picture_16.jpeg)

# Hitmap 8 planes

- H8 beamline at SPS / CERN
- 180 GeV/c mixed beam
- To optimize time and spatial resolution:
- charge calibration
- timewalk correction
- clock correction

![](_page_22_Figure_7.jpeg)

![](_page_22_Figure_8.jpeg)

## FASTER summer meeting Maastricht

### D. Oppenhuis

hitmap N18 300 µm

![](_page_22_Figure_13.jpeg)

hitmap N38 100 µm

![](_page_22_Figure_15.jpeg)

hitmap N33 300 µm

![](_page_22_Figure_17.jpeg)

hitmap N10 100 µm

![](_page_22_Figure_19.jpeg)

hitmap N36 100 µm

δ

õ

![](_page_22_Figure_21.jpeg)

hitmap N34 300 µm

![](_page_22_Figure_23.jpeg)

![](_page_22_Picture_26.jpeg)

# Correlations

![](_page_23_Figure_2.jpeg)

## D. Oppenhuis

## Time resolution vs depth threshold=900e

FASTER summer meeting Maastricht

![](_page_23_Picture_9.jpeg)

![](_page_24_Figure_0.jpeg)

FASTER summer meeting Maastricht

D. Oppenhuis

## MCP-average tracktime N149

![](_page_24_Picture_6.jpeg)

# time resolution as function of Depth and Threshold zoomed

![](_page_25_Figure_1.jpeg)

### D. Oppenhuis

## Time resolution vs depth

FASTER summer meeting Maastricht

![](_page_25_Picture_8.jpeg)

# Single pixel timewalk (axis to ns)

300 ToA [195 ps] 45 40 200 35 100 30 25 20 -100 15 10 -2005 -3000 1800 200 ToT [25 ns] 2000 1600 1400

timewalk for 250 V single pix (134,126)

### FASTER summer meeting Maastricht

![](_page_26_Picture_5.jpeg)

Entries

![](_page_26_Figure_7.jpeg)

error on timewalk curve

![](_page_26_Picture_10.jpeg)

![](_page_26_Picture_12.jpeg)

# Perpendicular time resolution (N149 250 um ILGAD) Threshold scan

time resolution vs threshold

![](_page_27_Figure_2.jpeg)

FASTER summer meeting Maastricht

0.6 time res [ns] 0.55 0.5 0.45 0.4 0.35 matrix no correction 1 pix no correction timewalk correction 1 pix timewalk correction 0.35000 6000 7000 2000 3000 4000 1000

time resolution vs threshold

20 September 2024

![](_page_27_Picture_9.jpeg)

threshold [e-]

# Perpendicular time resolution (N149 250 um ILGAD) Threshold scan

time resolution vs threshold

![](_page_28_Figure_2.jpeg)

FASTER summer meeting Maastricht

0.6 time res [ns] 0.55 0.5 0.45 0.4 0.35 matrix no correction 1 pix no correction timewalk correction I pix timewalk correction 0.35000 6000 7000 2000 3000 4000 1000

time resolution vs threshold

20 September 2024

![](_page_28_Picture_9.jpeg)

threshold [e-]

![](_page_29_Figure_1.jpeg)

FASTER summer meeting Maastricht

## D. Oppenhuis

## MCP-250 µm ILGAD threshold 3000 V (134,126)

![](_page_29_Picture_7.jpeg)

## Timewalk

- Earlier signal close to read-out electrode •
- Worse time resolution close to read-out electrode
- Multiple bands in timewalk curve
- Timewalk correction as function of depth

![](_page_30_Figure_5.jpeg)

![](_page_30_Figure_9.jpeg)

FASTER summer meeting Maastricht

![](_page_30_Picture_12.jpeg)

![](_page_31_Figure_0.jpeg)

### D. Oppenhuis

#### 34

FASTER summer meeting Maastricht

![](_page_31_Picture_6.jpeg)

# Charge calibration with test pulses

![](_page_32_Figure_1.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

#### D. Oppenhuis

![](_page_32_Figure_8.jpeg)

FASTER summer meeting Maastricht

![](_page_32_Picture_11.jpeg)

# **Spatial resolution**

- Four innermost planes rotated 9° around x and y to enhance charge sharing between pixels
- Charge-weighted mean gives cluster position
- Single plane resolution: **4.3 μm**
- Pointing resolution at DUT: 2.7 μm (Mixed hadron beam 180 GeV/c)
- Working on η corrections to improve spatial resolution

![](_page_33_Figure_6.jpeg)

### FASTER summer meeting Maastricht

# DUT

![](_page_33_Picture_13.jpeg)

![](_page_33_Figure_14.jpeg)

![](_page_33_Picture_16.jpeg)

# Time resolution

- ~210-220 ps

![](_page_34_Figure_4.jpeg)

FASTER summer meeting Maastricht

![](_page_34_Picture_10.jpeg)

# Time resolution

- ToA measurement with 640 MHz voltage-controlled oscillator
- Per superpixel VCO corrections
- After Timewalk+VCO corrections: ~168-185 ps
- Track time: 4 × 100 µm orthogonal planes : **90 ps**

![](_page_35_Figure_5.jpeg)

## **Frequency per SPixel**

![](_page_35_Figure_10.jpeg)

![](_page_35_Figure_11.jpeg)

FASTER summer meeting Maastricht

20 September 2024

![](_page_35_Picture_14.jpeg)

0.1675

0.1641

1665