The next generation of monolithic sensors for ALICE

Isis Hobus Maastricht FASTER meeting 20/09/2024

MAPS

- Monolithic Active Pixel Sensors
- Readout and sensor integrated in the same chip
- Compared to hybrid sensors:
 - + Easier detector assembly
 - + Lower material budget
 - + Lower cost
- ALICE ITS2 \rightarrow 10 m² of ALPIDEs
- The future
 - ALICE ITS3: installation in LS3, commissioning 2029
 - ALICE3: installation in LS4, commissioning 2035

Disadvantage!

- Non-uniformity of field
 - Charge collection by drift and diffusion
 - Relatively slow
 - Prone to charge trapping
- → Blanket
 - Full depletion of epitaxial layer
- \rightarrow Blanket + gap
 - Improve lateral field near pixel edges
- \rightarrow 65 nm transistor technology

APTS

Improved timing and radiation hardness

- Analogue Pixel Test Structure
- Pixel prototype of 65 nm technology
- · Different flavours: standard, modified, with gap
- 6x6 pixel matrix
- Direct analogue readout of central 4x4 pixels
- Different pixel pitches: 10, 15, 20, 25 µm
- Source follower/OpAmp output driver

Irradiated APTS

To study the radiation hardness

- Neutrons @ reactor Ljubljana
 Three different levels of irradiation

Setup

Innermost 4 pixels readout with oscilloscope

Isis Hobus - Maastricht FASTER meeting - 20/09/2024

Leakage current

- Radiation damage can create defect levels in the bandgap
- Studying return to baseline of pulsed waveforms

 Dependency on operating temperature to be studied

Charge calibration

- Iron-55 \rightarrow 2 X-ray peaks
- charge \rightarrow signal amplitude
- Pixel capacitance

 10^{4}

10³

10²

entries = 2116 Mn K_a peak fit $\mu = 81.8$ mV

Mn K_a peak fit $\sigma = 1.3$ mV Mn K_{β} peak fit $\mu = 88.9$ mV

Mn K_{β} peak fit $\sigma = 1.8$ mV

1

Κα Κβ

entries = 2065

Mn K_a peak fit $\mu = 80.6$ mV

Mn K_{α} peak fit $\sigma = 1.2 \text{ mV}$

Mn K_{β} peak fit $\mu = 88.1$ mV

Mn K_{β} peak fit $\sigma = 1.8$ mV

MOST

Stitched sensor with timing capabilities

- MOnolithic Stitched Sensor with Timing
- Prototype for wafer scale chips
- 160 submatrices of 88x64 pixels
- Pitch of 18 µm

Ongoing work

Work by Artem, Mariia and Sergei!

Yield

- Powering
- Check of shorts

CI 7 ($\varepsilon = 99.98\%$)

Pixel responsivity

1.0

0.8

0.6

- 0.4

- 0.2

0.0

Sensor operation

- Scans to optimising the settings
- Decoding of signal

Yield results so far

Total of **36** tested: **13**: OK **13**: OK with increased currents **10**: NOK (short, trip) (26 of them glued, bonded and tested at Nikhef!) **19** more, ready to be tested 65 more produced, to be glued, bonded and tested

Outlook

APTS

Work ongoing to study radiation hardness

Irradiated sensors to be tested at the SPS test beam next week!

 \rightarrow determine their time resolution and detection efficiency

Thanks :-)

MOST

Study of yield and sensor operation ongoing

Back up

APTS OA schematic

Test pulsing at different fluences

Pulsing for $I_{\rm eff}$

- Pulsing at varying I_{reset}
- Fit for effective current

 $V(t) = -V_{\rm th} \cdot \ln\left(e^{-(\mathbf{I}_{\rm eff} \cdot (\mathbf{t} - \mathbf{t}_0))/(\mathbf{V}_{\rm th} \cdot \mathbf{C})} + 1\right)$

- describes trailing edge
- $V_{\rm th}$ thermal voltage
- C capacitance \rightarrow from charge calibration

Fitting for I_{leakage}

 $I_{\text{eff}} = m \cdot I_{\text{reset}} - \mathbf{I}_{\text{leakage}}$ Weighted fit

MOST setup at Nikhef

MOST under test

MOST architecture

10 stitched units \rightarrow 4 matrices \rightarrow 4 submatrices/control interfaces \rightarrow 88x64 pixels

