

CAOS VACUUM SYSTEM

Francesco Bianchi Gabriele Capoccia Franco Frasconi Alberto Gennai **Aniello Grado** Ettore Majorana Antonio Pasqualetti

Helios Vocca

CAOS-ETpathfinder workshop 2024/09/10

ETIC-Einstein Telescope Infrastructure Consortium

IR0000004 - CUP_ I53C21000420006

CAOS vacuum system

CAOS Laboratory vacuum system

The CAOS vacuum system consists of two towers to host a Fabry-Perot cavity suspended to an ET "full size" Super Attenuator. In the future the system will be upgraded to three towers to host a Michelson

The towers characteristics are:

15 m tall

interferometer.

- ~ 20 tons weight each
- **AISI 304 SS**
- Operational pressure: 10⁻⁷ mbar
- Volume $\sim 100 \text{ m}^3$
- Surface $\sim 200 \text{ m}^2$
- Lateral access
- Distance between center axes: 6.5 m
- No separation roof between mirror and SA chambers (can be implemented later)

.

Finanziato dall'Unione europea NextGenerationEU

The towers are designed to accommodate the SA but can also function independently as test benches:

- Expand the available space for operations within the towers.
- Explore methods to increase tower rigidity.
- Evaluate lateral access.
- Engineer the airflow system for use during maintenance (*F. Bianchi*).
- Optimize the balance between performance and cost.
- Develop a new design for tower anchoring.
- Enhance the interface between the SA safety structure and the vacuum tower.
- Conduct NEG pump testing in an SA environment (ongoing also at EGO).
- Refine the Finite Element Method (FEM) simulations of the towers, including virole flanges (*G. Capoccia*).
- Assess the feasibility of a payload robotic installation and manipulation

Base tower modification

- Increase space inside the base tower to make easier the large masses handling
 - More space to accommodate future development of the payload
 - Possibility to increase the marionetta-mirror pendulum length
 - Reduce thermal noise
 - Possibility to test solution with intermediate mass
- Reduce the tower foot print
- Improve rigidity (increase fundamental mode frequency ~ +30%, goal f₀ > 15 Hz)
 - Make easier the large band loop on accelerometers at the SA base
- Lateral access
- Anchoring
- Dust control on mirrors during assembly and maintenance

Cylindrical vs Conical

<u>Conical design</u>

	Cylindrical	Conical
Tower height	14.85 m	14.85 m
Base height	2.7 m	3.4 m
Base footprint	4x4 m	3.5x3.5
# main virole	5	4
Main virole height	1.95 m	2.2 m
Main virole weight	1.15 t	1.67 t
Lateral Entrance	1.5x1.2 m	1.5x1.2 m
Base weight	15.82 t	14.42 t
Tower weight	23.23 t	20 t

Conical design

Tower base anchoring system

32 tie rods in a steel structure embedded in reinforced concrete (1.1 m thick)

Tower base anchoring system

New design for inlet air

Credit: Francesco Bianchi

Outlet

CFD analysis of airflow insid the CAOS towers

CAOS vacuum layout **Acoustic shield** Piano 1 ۵, m , P1 21.00 Pirani Pirani 5x10⁻¹¹ mbar ₩ \forall **Primary** \forall 5x10⁻¹¹ mbar (\forall) pumping 5x10⁻¹¹ mbar 5x10⁻¹¹ mbar FR 10⁻⁹ mbar distribution FR 10⁻⁹ mbar 1.55 CF DN 100 CF DN 200 CF DN 100 \@į ∞∡⊦⊙ Analysis Analysis + > < -+ > < < >RGA RGA camera camera Leak detec 6 2000 l/s 2000 l/s venting venting 5.10 1.90 \@ \@, . 8.4 0 0 Air filter Air filter Towers Towers Pirani (@/) 1.5 Sala controllo 37.68mg Leak detec Leak detec. Leak detec. Ν 訔 +3.90 .10.12 (1.1) 25.66mg CF DN 200 CF DN 200 Vano scala (a) \@/ schematic Q Cavedio tecnico 1.50 m (9.75 36 m³/h 36 m³/h 88 m³/h

Missione 4 • Istruzione e Ricerca

Conclusion

- The CAOS vacuum system hosts the SA. At the same time it serves as a test bench.
- CAOS seeks to fully leverage the heritage of knowledge acquired in VIRGO
- Extensive collaboration with all CAOS subsystems to meet current and future requirements.
- Close cooperation with the ET Vacuum and Cryogenics Tower division.
- We are tailoring the design of the CAOS tower to align closely with the needs of the ET-HF tower.
- Full scale prototype for ET-HF towers
- We are developing comprehensive simulation tools, validated against a full-scale real system, to aid in the design of the ET-HF towers, in case modifications are necessary.

Thank you

