DM ML

Jelle Aalbers Nikhef / University of Groningen

Liquid Xenon based Rare Event Experiments

Main activity: 1. Search for Galactic Dark Matter, e.g. WIMP, axion, ALPs <u>Our Lab</u> **Small Contributions** 2. Neutrinoless double beta decay KamLAND-Zen DARWIN / XLZD **XENONnT** XAMS R&D **VULCAN R&D** 3m 1.5m **PTOLEMY R&D** HILL TH OT A

How we use Machine Learning

- 1) Efficient heuristic
- 2) Modelling unknowns

S2 Position reconstruction

S2 hitpattern -> (x, y), maybe uncertainty?

If optical response known, likelihood wins, but

- ML is faster
- Response not perfectly known, likelihood hates outliers

Different neural nets (simple, convolutional, graph)

Finding the optical response from data, unsupervised:

- From nothing: autoencoders
- Refining the model: sequential fit, ...?

Noisy autoencoder for position reconstruction in LXe TPCs

Input: Real ^{smi}Kr S2 top PMT hitpatterns 2D latent space Network does NOT know true positions, PMT forations, gains, ...

Colors are positions from regular, optical-MC hand recommentation

Nuise

14.1

Output: Predicted hitpatterns

Solio Address and Davi Pelsonsy.

No.o Make Todat value

Mean discrepancy between observed hitpatterns and those expected at reconstructed positions (83mKr calibration events)

More ML for modelling

Delayed electron signals

(Red is a simple analytical model, ML should do better)

From: Umesh 2024 (BSc thesis)

Clustering to assist classification of XAMS waveforms by shape; collaboration with Rice U. (Sanchez et al., in prep)

Other developments / opportunities

WIMP analysis likelihood:

- <u>Flamedisx</u>: using tensorflow for large rate computations (not ML)
- ...or, use ML to approximate the 6D likelihood?

Decision trees for cuts against accidental coincidences / combinatorical bg.

