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The many faces of the proton

QCD bound state of quarks and gluons
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 Valence quarks (up and down) give the proton 
its quantum numbers (e.g. electric charge)

Ψ⟩ ≈ uud⟩

Qp = + 1 Qu = + 2/3
Qd = − 1/3

  Sea quarks (antiup, antidown, strange, …) 
arise from quantum fluctuations

  Tightly held together by gluons, can only be 
broken in extremely energetic collisions



Energy conservation and quark number 
conservation are fixed boundary conditions

Dependence on x fixed by non-perturbative QCD dynamics: extract from experimental data

Probability of finding a gluon inside a 
proton, carrying a fraction x of the proton 
momentum, when probed with energy Q

x: fraction of proton 
momentum carried by gluon

Energy of hard-scattering reaction: 
inverse of resolution length

g(x, Q0, {ag}) = fg(x, a(1)
g , a(2)

g , …)
constrain from data

Parton Distributions

Dependence with resolution scale Q: DGLAP 
evolution, computable from first principles



ML Proton Structure
 Model-independent PDF parametrisation with neural networks as universal unbiased interpolants 

 Stochastic Gradient Descent via TensorFlow for neural network training

 Automated model hyperparameter optimisation: NN architecture, minimiser, learning rates …

evolution basis
flavor basis

g(x, Q0, {ag}) = fg(x, a(1)
g , a(2)

g , …)



Error estimate based on Monte Carlo replica method (band: standard deviation over the MC replicas)

each curve is a separately trained neural network

Machine Learning PDFs



common assumption: the proton wave function does not contain charm quarks
 the proton contains intrinsic up, down, strange (anti-)quarks but no intrinsic charm quarks

The charm content of the proton

mp ∼ 1 GeV

mp ∼ 1 GeV

charm quarks heavier than the proton itself!



Estimate MHOUs from the shift between NNLO and N3LO matching 

The 3FNS charm PDF displays non-zero component peaked at large-x 
which can be identified with intrinsic charm

Intrinsic Charm

Intrinsic Charm in the Proton

JR et al, Evidence for intrinsic charm quarks in the proton, Nature (2022)



credits: https://www.quantamagazine.org/inside-the-proton-the-most-complicated-thing-imaginable-20221019/



GPU & Hyperparameter Optimisation
Deploy NNPDF machinery on GPUs & optimise performance: factor speed 200 improvement!

Also ensure CPU memory consumption keep reasonable

Develop new strategies for hyperparameter optimisation based on the full posterior 
probability distribution, not only on first moment as most approaches

NNPDF meeting
Amsterdam 
26 February
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The Standard Model as an Effective Theory
The Standard Model EFT is defined by: 

Particle (matter) content: quarks and leptons 

Gauge (local) symmetries and their eventual 
breaking mechanisms

Lorentz invariance and other global symmetries

Linearly realised SU(2)L EW symmetry breaking

Validity only up to certain energy scale Λ

All possible operators of mass-
dimension d consistent with 

above requirements
EFT coupling constants,

to be determined from data



Statistically optimal observables from ML
Optimal observables depend on all kinematic variables and all EFT coefficients

parametrised with neural networks trained to Monte Carlo simulations & benchmarked with exact calculations

extendable to arbitrary number of kinematic variables and EFT coefficients: training can be parallelised

methodological uncertainties (e.g. finite training samples) assess with the replica method

each replica trained to an independent set of MC events

representation of the probability distribution in the space of ML models



Neural network training

g = (1 + rσ)−1

NN training by minimising cross-entropy loss function

(2 kinematic features)x = (mtt̄, ytt̄)



Results: Higgs+Z production

Sensitivity improves in unbinned analysis

Sensitivity improves when using all kinematic 
information

Clear improvement as compared to traditional 
observables used in EFT fits

Traditional observables
AI-optimised observables
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Applications to Material Science

 Background subtraction & anomaly detection problems 
from HEP arise also in material spectroscopy

Direct correlation of strain fields, band gap 
modulation, and exciton localisation in 1D-MoS2 
nanostructures with different morphologies 

Developed EELSfitter ML framework together with TU 
Delft researchers

strain field mapping
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Summary and outlook
Machine learning makes possible identifying patterns in the data whereby one can efficiently 
solve problems which are difficult of intractable with traditional approaches

 Enable discoveries such as intrinsic charm quarks in the proton & make possible to optimise 
the sensitivity of searches for interesting phenomena hidden in the data

 Our technology is portable to many other problems, as demonstrated for their applicability to 
data analysis in electron microscopy of quantum materials

Codes are open source and extensively documented, and have benefitted from contributions 
as well from BSc and MSc students in our groups
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