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The many faces of the proton

QCD bound state of quarks and gluons

[ Valence quarks (up and down) give the proton
its quantum numbers (e.g. electric charge)
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arise from quantum fluctuations
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M Tightly held together by gluons, can only be
broken in extremely energetic collisions



Parton Distributions

g(z, Q)
\ Energy of hard-scattering reaction:
inverse of resolution length

Probability of finding a gluon inside a
proton, carrying a fraction x of the proton x: fraction of proton
momentum, when probed with energy Q momentum carried by gluon

Dependence on x fixed by non-perturbative QCD dynamics: extract from experimental data

g(X, Q()9 {Clg}) =]fg(x9 a(él)a a(éZ), oo )

constrain from data

¢ Dependence with resolution scale Q: DGLAP ¢ Energy conservation and quark number
evolution, computable from first principles conservation are fixed boundary conditions



ML Proton Structure

M Model-independent PDF parametrisation with neural networks as universal unbiased interpolants

[ Stochastic Gradient Descent via TensorFlow for neural network training

M Automated model hyperparameter optimisation: NN architecture, minimiser, learning rates ...
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xV(x,Qy) xVix, Q) xVie(x,Qy) xT5(x,Qy xTg(x,Qy) xTs(x, QOD
xg (x, QO) xu(x, QO) xﬂ(x, QO) xd(x, QO) xJ(x, Q()) xs(x, QO)

evolution basis
x5(x, Qy)  xct(x, QOD flavor basis




10-2

1073

Machine Learning PDFs
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Error estimate based on Monte Carlo replica method (band: standard deviation over the MC replicas)

each curve is a separately trained neural network



the proton contains intrinsic up, down, strange (anti-)quarks but no intrinsic charm quarks

The charm content of the proton

common assumption: the proton wave function does not contain charm quarks
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charm quarks heavier than the proton itself!
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Intrinsic Charm in the Proton
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The 3FNS charm PDF displays non-zero component peaked at large-x
which can be identified with intrinsic charm

JR et al, Evidence for intrinsic charm quarks in the proton, Nature (2022)



credits: https:/www.quantamagazine.org/inside-the-proton-the-most-complicated-thing-imaginable-20221019/




GPU & Hyperparameter Optimisation

& Deploy NNPDF machinery on GPUs & optimise performance: factor speed 200 improvement!

& Also ensure CPU memory consumption keep reasonable

€ Develop new strategies for hyperparameter optimisation based on the full posterior

probability distribution, not only on first moment as most approaches
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The Standard Model as an Effective Theory

The Standard Model EFT is defined by:

¢ Particle (matter) content: quarks and leptons

¢ Gauge (local) symmetries and their eventual
breaking mechanisms

¢ Lorentz invariance and other global symmetries
¢ Linearly realised SU(2)L. EW symmetry breaking

¢ Validity only up to certain energy scale A

oo Na (d) (f)(d)
LSMEFT({Ci}aA) = Lsm ZZC Ad—4

d=5 1=1

All possible operators of mass-
EFT coupling constants,  dimension d consistent with

o 1o be determined from data above requirements



Statistically optimal observables from ML

Optimal observables depend on all kinematic variables and all EFT coefficients

_ fo(zsc
- fo(2,0

Neft Neft Neft

; =1+ Zr((,j)(:c)cj + >: :r((,j’k) (x)cjck
j=1

J=1k2>j

ro(x,c)

parametrised with neural networks trained to Monte Carlo simulations & benchmarked with exact calculations

Neft Neft Meft
Fo(x,e) =1+ NNU(Z)c; + ) Y NNUH(z)c;c)
7=1 J=1k>j

extendable to arbitrary number of kinematic variables and EFT coefficients: training can be parallelised

methodological uncertainties (e.g. finite training samples) assess with the replica method

Neft . Neft MNeft .
Pz, c) =1+ Z NNZ(J)(a:)cj + S: S: NNgj’k) (T)cjick, i =1,..., Niep
7=1 J=1 k2>

each replica trained to an independent set of MC events

representation of the probability distribution in the space of ML models



Neural network training

Unbinned exact/Unbinned ML
Epoch 1

1.05

(N

1.04
: 1.03
-1.02
S |
-0.98
1 -0.97
tr tr tr) (tr K -
"”a("UaC§' )7 ;(c )) = 1—|—c§- ) {TINNU ) (x) 0.96
X = (mtfa }’tf) —2 (2 kinematic features) €tG ° GG 0.95

1.5 2.0 2.5 3.0
myz [ TeV]

NN training by minimising cross-entropy loss function
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Results: Higgs+Z production

Marginalised 95 % C.L. intervals, O (A_4) at £ =300 fb*

=1 Traditional observables -

p+p—o>h+Z>b+b+4T 4+

- AI-optimised observables

SM eyr . . . .
& Sensitivity improves in unbinned analysis

& Sensitivity improves when using all kinematic
information

¢ Clear improvement as compared to traditional
observables used in EFT fits
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Applications to Material Science

strain field mapping
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[ Background subtraction & anomaly detection problems
from HEP arise also in material spectroscopy

A Direct correlation of strain fields, band gap
modulation, and exciton localisation in 1D-MoS:
nanostructures with different morphologies

[ Developed EELSfitter ML framework together with TU
Delft researchers



Summary and outlook

¢ Machine learning makes possible identifying patterns in the data whereby one can efficiently
solve problems which are difficult of intractable with traditional approaches

¢ Enable discoveries such as intrinsic charm quarks in the proton & make possible to optimise
the sensitivity of searches for interesting phenomena hidden in the data

¢ Our technology is portable to many other problems, as demonstrated for their applicability to
data analysis in electron microscopy of quantum materials

¢ Codes are open source and extensively documented, and have benefitted from contributions
as well from BSc and MSc students in our groups

: # / The NNPDF collaboration ) e Ko 4
NINPDF Nik[hef ESSS8 TUDelft

The NNPDF collaboration

(Search docs >
m l4eft 0.0’5 The NNPDF collaboration performs research in the field of high-energy physics. Welcome to the EELSFitter website!

Getting started proton using contemporary methods of artificial intelligence. A precise knowledg
the proton, which describe their structure in terms of their quark and gluon cons

Large Hadron Collider of CERN.
Code for data: validphys Spectroscopy (EELS) measurements in Transmission Electron Microscopy (TEM). EELSfitter is based on the machine lear!

pip install ml4eft @

Fitting code: n3fit EELSFitter is an open-source Python-based framework developed for the analysis and interpretation of Electron Energy

i i : techniques developed by the NNPDF Collaboration in the context of applications in high energy physics, in particular fe
Machine Learning for Effective Field Theories ga.rl\jlmgtexpenmental ata) The NNPDF code 4 . v . .. e . i = LA .
OElrEREr forward neural networks for unbiased regression in multidimensional problems.

Storage of data and theory predictions . .
The scientific output of the collaboration is freely available to the public through

Navigation Project description Along with this online documentation, we release the NNPDF code, used to proc WS2 nanoﬁower — Bandgap Energy (Media’n)
0-

Chi square figures of merit code is made available as an open-source package together with the user-friend| 19
< Project description MLAEFT is a general open-source framework for the integration of unbinned multive Contributing guidelines and tools .

of particle physics data. It makes use of machine learning regression and classificat Releases and compatibility policy The code can be used to produce the ingredients needed for PDF fits, to run the

Theory

‘D Release history high-dimensional likelihood ratios, and can be seamlessly integrated into global an . . . framework used to produce a global PDF fit made publicly available, enabling for -1.8
Standard Model Effective Field Theory and Parton Distribution Functions. Catiues (gl e e NNPDF4.0 analysis. Moreover, the code enables the user to explore a number of ’
Rawnlandflas Servers the impact of new experimental data on PDFs, the effect of changes in theory se 100
External codes comparison between theoretical predictions and experimental data over a broad -1.7 .
Tutorials i

If you are a new user head along to Getting started and check out the Tutorials.
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Summary and outlook

¢ Machine learning makes possible identifying patterns in the data whereby one can efficiently
solve problems which are difficult of intractable with traditional approaches

¢ Enable discoveries such as intrinsic charm quarks in the proton & make possible to optimise
the sensitivity of searches for interesting phenomena hidden in the data

¢ Our technology is portable to many other problems, as demonstrated for their applicability to
data analysis in electron microscopy of quantum materials

¢ Codes are open source and extensively documented, and have benefitted from contributions
as well from BSc and MSc students in our groups

Giacomo Tanjona Tommaso



