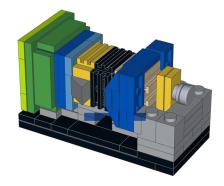
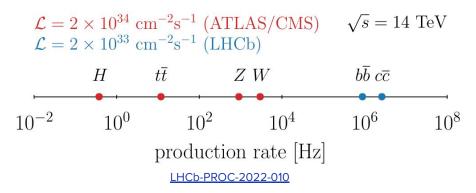
ML at LHCb in general and at Nikhef



Maarten van Veghel, with input from Jacco de Vries

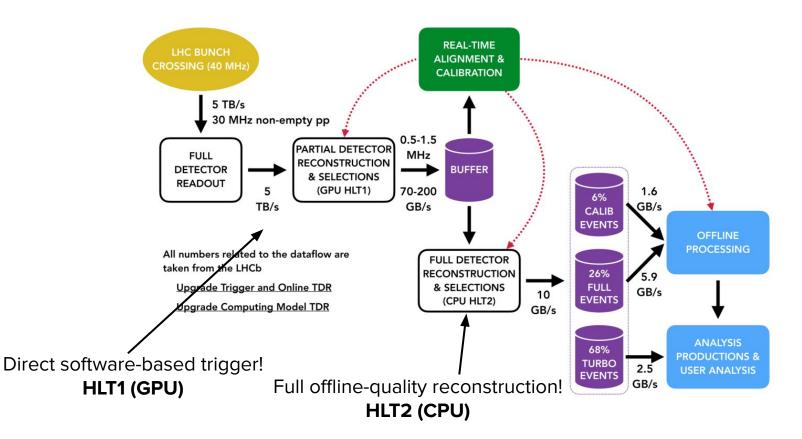
Context (of online use) of ML at LHCb

• LHCb studies mainly decays of *beauty* and *charm* hadrons with high signal rates



- DAQ running at 40 MHz to cope with high signal rate
 - *Reconstruction and selection* with as **many features** as possible, as **early** as possible
- Extract information from tracking sub-detectors and subsequently *reconstruct* and *select*
 - Make use of Machine Learning (inference) at earliest level as much as possible
 - Typically small (fast!) models with high-level quantities as input (around 10 20 typically)
 - Focus on online application (first), as it is (probably?) most unique about the LHCb ML situation
 - Resources almost all at LHCb

Data flow of the current detector



ML infrastructure in online environment of LHCb

• Online environment needs

- Most of all high speed!
- **Fast turn around time** of training and deployment, ...
- Common tools / standardization
 - avoid customization / hard coded solutions as much as possible
 - improve maintainability and ease of use
- Production level code needs a lot of testing
 - Run ML pipelines in CI/CD (Gitlab/Jenkins)
 - Also for fast turnaround time!

• First developments now in production for HLT2 (CPU)

- Most applications, most interactions with 'users'
- First focus on fastest algorithms, also have simplest models!
- But in the future more emphasize on general libraries and GPUs, developments ongoing
 - More challenging setup with demands on GPU/CPU compatible libraries and speed

Fast inference in HLT2: CPU

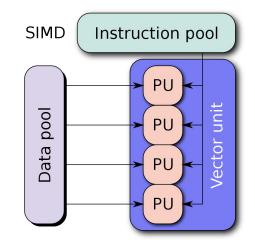
- Fast inference of relatively simple models (MLPs)
 - Shapes of models fully set at compile time
 - Custom implementation within Gaudi framework
 - Allows full control (of speed ups)
 - Typical MLP layers supported
 - Integration with (SIMD) event model

• Evaluation using SIMD

- Automatic batching when running over ranges like std::vector with non-SIMD event model
- Weights loaded during configuration from database
 - Allows flexibility with retraining and deployment

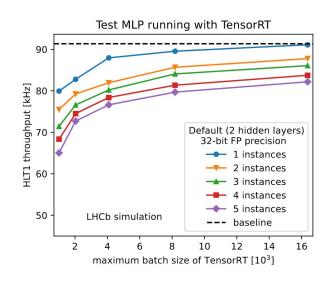
• Training infrastructure

- API with **PyTorch**
 - Regression test to ensure similarity
 - Easily extendable to other training software
- Example of training runs in CI / Jenkins



Fast inference in HLT1: GPU

- Different beast than CPU
 - Typically different (and more) memory and dimensionality considerations and constraints
 - Needs to run on both GPU and CPU
 - Both *TensorRT* and *ONNXRuntime* availability
- Number of neural-net implementations are only **increasing**
 - efforts going into right direction, but currently no general infrastructure
- Effort ongoing here at Nikhef, lead by Roel Aaij, on making available general inference libraries and infrastructure

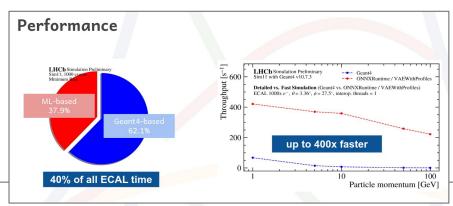


See e.g. LHCB-FIGURE-2023-006

Offline use of ML at LHCb

- Most applications in **analyses**, typically rather simple models are sufficient (BDTs, MLPs, ...)
 - I'm not aware of more sophisticated models here, or even need of?
- Use in **simulation** is almost production ready
 - VAEs, but also even more classical methods like point libraries
 - Main care had to be taken in validation and calibration
- Specific applications like **flavour tagging**
 - Main use is BDTs
 - Use of Transformers, GNNs, etc... are still in development

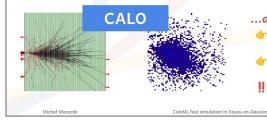
• All need better infrastructure, just like online (more libraries/standardization/testing/...)

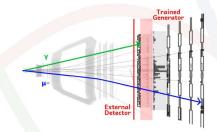


Fast simulations & ML

- stop detailed simulation in a particular region of the detector,
- use machine learning to produce a similar output,

What happens in Geant4? What is actually stored?





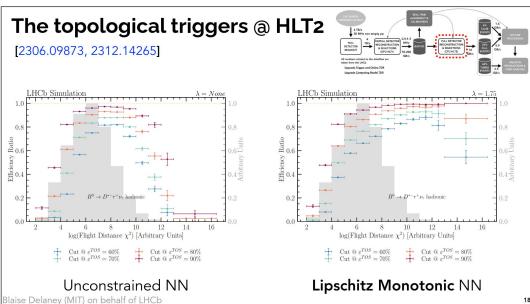
...and machine learning

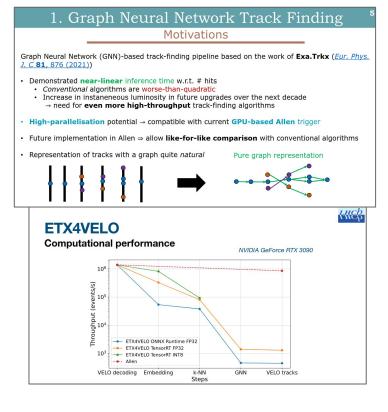
- train a ML model to be able to produce the same output as Geant4,
- produce hits by running inference on the generator,
- **!!** interface to machine learning libraries needed to perform the inference!

113th LHCb week

ML R&D at LHCb

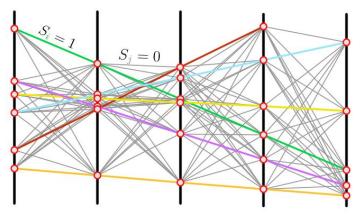
- Some experience so far at LHCb
 - Developing a tool versus looking for problems
 - How to do it versus not how to do it?
- By now, use of **Lipschitz monotonic NNs** used widely in production, so not R&D anymore!
 - Triggers our main physics!





Blue sky

- Effort ongoing at (e.g. our own Maastricht!) using quantum algorithms (including quantum ML)
- In the context of **pattern recognition** for track reconstruction with SURF, IBM and FASTER (WP3.2)
- Goal: explore what is possible, what are limitations



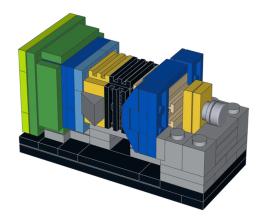
- Formulate problem as an Ising-like Hamiltonian connecting 2-hit segments:
 - Variational Quantum Eigensolver

finding the ground state of |Segments on or off>

- Variational Quantum Linear Solver
 - solving a linearized set of equations (based on [JINST 18 P11028])
- Challenge: finding an 'ansatz' (a suitable circuit structure):
 - → Collaborate with UM comp.sci. dept (DACS), using q-Monte Carlo Tree Search
 - → Brute-force on stoomboot
- Important for qML: embed QC with HPC, e.g. Snellius (with EuroHPC funding?)

TLDR

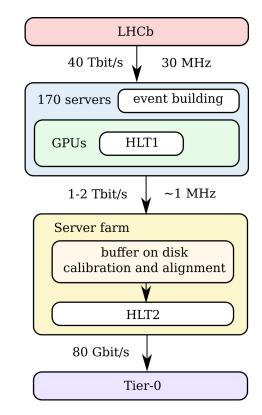
- At LHCb most unique application of ML is online
 - Fast inference is crucial and main driver op development
 - Usually custom inference is fastest, but providing a good API to training libraries is essential!
 - But also trying external inference libraries!
- In general developing infrastructure to improve maintainability
 - Cannot overstate the importance of
 - Testing, pipelines, model storage, ...
 - Both for CPU and GPU applications!
 - Making R&D easier
- Other applications in e.g. **simulation** and flavour tagging
 - Less unique? but very useful nonetheless
- **R&D and blue sky** approached tried and ongoing
 - Lipschitz monotonic NNs, can highly recommend!
 - In development
 - Quantum (ML) algorithms, e.g. for tracking (HL-LHC)



Backup

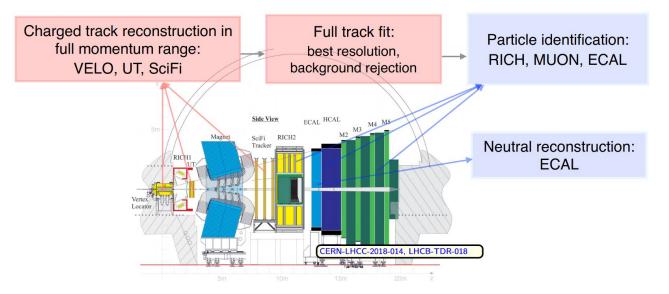
First level trigger at LHCb HLT1

- About 400 GPUs reduce the rate of incoming data from 5 TB/s to approximately 100 GB/s
 - About order 100 kernels running, with the <u>Allen</u> software project
 - Ballpark: with 500 GPUs, minimum requirement
 is 60 kHz per GPU for 30 MHz non-empty bunch crossings
- Reconstruction
 - Charged particles in tracking detectors
 - clustering, tracking, vertexing
 - Track fit and secondary vertex reconstruction
 - Muon stations / calorimeter reconstruction
 - Muon and Electron PID
 - Including neural nets
 - Neutrals reconstruction
- Selection
 - focused on *displaced charged tracks*
 - Including neural nets for two-track combinations



Second and final level trigger HLT2

- Full, offline-quality (after alignment and calibration) reconstruction with full-quality track fit to achieve high momentum resolution, calibrated PID and vertexing on CPUs
 - \circ with improvements in muon ID, electron ID and bremsstrahlung reconstruction
- Order of 1000 selections
 - including dedicated reconstructions, selective information persistency, ...
- Ballpark: about 200 Hz throughput needed assuming about 5000 servers with 1 MHz input



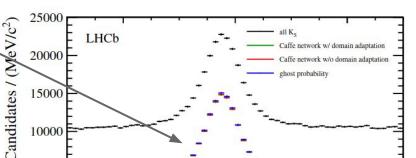
Applications of ML in online environment of LHCb

10000

5000

480

- Classification of reconstructed objects (at all levels)
 - Reconstruction 0
 - Charged tracks
 - Real vs fake (ghost rejection)
 - Type of charged tracks
 - pion / muon / electron / ...
 - Selection level \bigcirc
 - Higher level objects
 - combination of tracks coming from heavy flavour decays
 - Typically trained / used for selecting specific signals with trigger lines
 - Typical feature counts of 10-20 Ο
- Other tasks like *pattern recognition* and anomaly detection are possible and studied



500

LHCb-PUB-2017-011

Ghost rejection MLP from previous LHCb Run 2

520

 $m_{\pi\pi}$ [MeV/c²]

ML infrastructure in online environment of LHCb

• Online environment needs

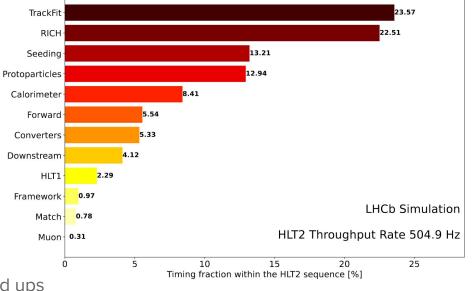
- Most of all high speed!
- **Fast turn around time** of training and deployment, ...
- Common tools / standardization
 - avoid customization / hard coded solutions as much as possible
 - improve maintainability and ease of use
- Production level code needs a lot of testing
 - Run ML pipelines in CI/CD (Gitlab/Jenkins)
 - Also for fast turnaround time!

• Most needed in HLT2 (CPU)

- Most applications, most interactions with 'users'
- First focus on fastest algorithms, also have simplest models!
- But in the future more emphasize on general libraries and GPUs, developments ongoing
 - More challenging setup with demands on GPU/CPU compatible libraries and speed

HLT2 (CPU) throughput

- Significant speed improvements have been achieved using
 - **Multithreading / vectorization** also in this CPU-based software
 - Structure-of-Arrays
 - Reduce memory usage
 - Parallelization with SIMD
 - Single Instruction/Multiple Data
 JINST 15 (2020) 06, P06018
 - Smarter, more selective algorithms
 - Pre-select on input of time-intensive algorithms
 - Mainly used in reconstruction sequences
 - See reconstruction throughput breakdown on the right before speed ups



• Developed new ML inference infrastructure to fully make use of that

Testing, pipelines and experience in production

- General aims achieved for HLT2 (CPU) infrastructure
 - Speeding up main classifiers (roughly 10% of reco timing)
 - factor 2 3
 - Separate / fully optimized inference from training V
 - Maintained training pipeline
- Running in production since start 2024 for HLT2 (CPU) infrastructure
 - Already used for fast retraining due to online needs
 - Retraining within a day, cross-checked / released / deployed within a few days
 - Multiple developers picked it up and are expanding it
 - Feedback so far is that it's easy to use and expand
- General aims achieved
 - Fast turnaround time 🔽

Training of model

- Provided in LHCb!4305 and Moore!2768
 - **PyTorch interface**
- This needs careful testing that these do the same
 - more on that later
- Convert model defined in header to python object
 - Using python binding (cppyy)
 - Write weights to file (json)
 - 11 from cppyy import gbl

12 from LHCbMath.VectorizedML import Sequence

14 ProbNN__Testing__Model = Sequence(gbl.ProbNN.Testing.Model())

- Training script with PyTorch provided
 - See <u>Hlt/RecoConf/options/hlt2_globalpid_training.py</u>

11	import torch
12	from torch import nn
13	
14	
15	<pre>class Sequence(nn.Module):</pre>
16	<pre>definit(self, model):</pre>
17	<pre>super()init()</pre>
18	<pre>mod = model.model()</pre>
19	# build layers
20	mystack = []
21	
22	<pre>def get_torch_layer(layer):</pre>
23	tlayer = None
24	<pre>layer_type = layer.name()[:-2]</pre>
25	<pre>if layer_type == "Linear":</pre>
26	<pre>tlayer = nn.Linear(layer.nInputs(), layer.nOutputs())</pre>
27	else:
28	layer_dict = {"Sigmoid": nn.Sigmoid, "ReLU": nn.ReLU}
29	<pre>tlayer = layer_dict[layer_type]()</pre>
30	return tlayer
31	
32	from collections import OrderedDict
33	<pre>for i in range(mod.nLayers()):</pre>
34	layer = mod.get_layer(i)
35	<pre>mystack.append((layer.name(), get_torch_layer(layer)))</pre>
36	<pre>selfstack = nn.Sequential(OrderedDict(mystack))</pre>
37	# save feature names
38	<pre>feats = model.features()</pre>
39	<pre>selffeatures = [feats.name(i) for i in range(feats.size())]</pre>
40	
41	<pre>def forward(self, x):</pre>
42	return self. stack(x)

Speed tests

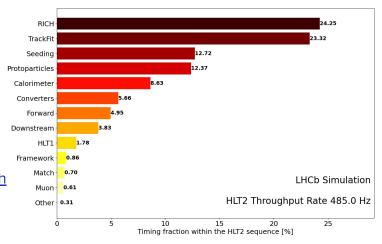
- Speed of ChargedProtoParticleMaker relative to master
 - 7% of reconstruction sequence (see <u>here</u>)!
 - dominated by ProbNN calculations
- Current models in master
 - TVMVA trained
 hard coded evaluation using <u>TMV_utils.h</u>
 - between 47-49 input features
 - Basically 'all' ProtoParticle info (incl. duplication)
 - \circ up to two hidden layers (between 50 and 70 neurons)

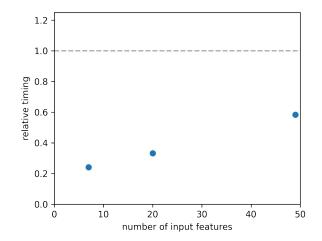
New SIMD models

- Large: 49 inputs
 - Two hidden layers (58 / 68 neurons resp.)
 - Fairest speed comparison
- Pruned: 20 inputs
 - Two hidden layers (30 / 35 neurons resp.)
 - Realistic / reasonable scenario

• About 3 times faster!

- Small: 7 inputs
 - Two hidden layers (12 / 12 neurons resp.)
 - Already very good performance!





Testing pipelines

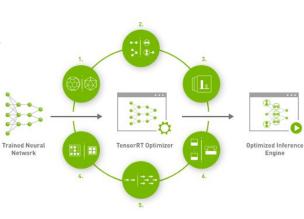
- QMT testing of whole infrastructure, see Moore!2768
 - Inference (compilation + runtime) and inference / training closure (model evaluation through trainer)
 - Does the model produce the same result (reference)
 - Make sure (PyTorch) Python model is the same as C++ version
 - Training: data + model saving / loading
 - Two tests for
 - data
 - training
 - Make sure the full pipeline with training works

```
Defined model with features: ['EcalPIDe', 'ElectronShowerDLL', 'BremPIDe', 'HcalPIDe', 'RichDLLe', 'TrackChi2PerDoF', 'TrackGhostProb']
model coverted to PyTorch: Sequence(
    (_stack): Sequenctial(
    (Linear_0): Linear(in_features=7, out_features=12, bias=True)
    (ReLU_1): ReLU()
    (Linear_2): Linear(in_features=12, out_features=12, bias=True)
    (ReLU_3): ReLU()
    (Linear_4): Linear(in_features=12, out_features=1, bias=True)
    (Sigmoid_5): Sigmoid()
   ))
difference between model and ref (prob; default) is -0.0000 +/- 0.0001
difference between model and ref (prob; default) is -0.00 +/- 0.00
AUC of prediction is 0.99650 and of reference is 0.99650
```

General libraries for ML inference in HLT1 (GPU)

- Flexibility, maintainability
 - Hard/hand-coded ML inference is not flexible / not great to maintain
 - Platform to load standardized ML-model data format: ONNX
 - Supported by many (if not most) training software
 - At CPU (HLT2) level being integrated with ONNXRuntime

- LHCb uses NVIDIA RTX A5000
- TensorRT [link] from NVIDIA provides
 - Fast-inference platform / SDK
 - ONNX files can be read by it
 - Optimization possible within package, like quantization



1. Weight & Activation Precision Calibration

Maximizes throughput by quantizing models to INT8 while preserving accuracy

2. Layer & Tensor Fusion

Optimizes use of GPU memory and bandwidth by fusing nodes in a kernel

3. Kernel Auto-Tuning

Selects best data layers and algorithms based on target GPU platform

4. Dynamic Tensor Memory

Minimizes memory footprint and re-uses memory for tensors efficiently

5. Multi-Stream Execution

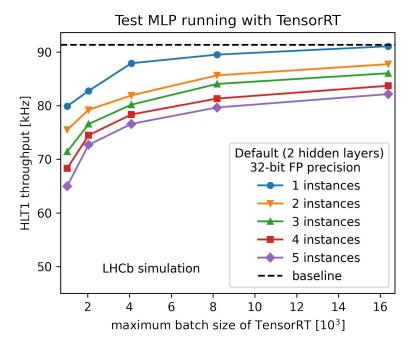
Scalable design to process multiple input streams in parallel

6. Time Fusion

Optimizes recurrent neural networks over time steps with dynamically generated kernels

Throughput impact of TensorRT inference

- The **baseline model** tested with respect to TensorRT **batch size**
 - Kernel overhead is main bottleneck
 - These MLPs are small
- At high batch size it seems getting
 feasible to run a few copies of such neural nets!



Flavour tagging

