
ML at LHCb
in general and at Nikhef

Maarten van Veghel,
with input from Jacco de Vries

1

Context (of online use) of ML at LHCb

2

● LHCb studies mainly decays of beauty and charm hadrons with high signal rates

● DAQ running at 40 MHz to cope with high signal rate
○ Reconstruction and selection with as many features as possible, as early as possible

● Extract information from tracking sub-detectors and subsequently reconstruct and select
○ Make use of Machine Learning (inference) at earliest level as much as possible

■ Typically small (fast!) models with high-level quantities as input (around 10 - 20 typically)
○ Focus on online application (first), as it is (probably?) most unique about the LHCb ML situation

■ Resources almost all at LHCb

LHCb-PROC-2022-010

https://cds.cern.ch/record/2823780/

3

LHCB-FIGURE-2020-016Data flow of the current detector

Direct software-based trigger!
HLT1 (GPU) Full offline-quality reconstruction!

HLT2 (CPU)

https://cds.cern.ch/record/2730181?ln=en

ML infrastructure in online environment of LHCb
● Online environment needs

○ Most of all high speed!
○ Fast turn around time of training and deployment, …
○ Common tools / standardization

■ avoid customization / hard coded
solutions as much as possible

■ improve maintainability and ease of use
○ Production level code needs a lot of testing

■ Run ML pipelines in CI/CD (Gitlab/Jenkins)
● Also for fast turnaround time!

● First developments now in production for HLT2 (CPU)
○ Most applications, most interactions with ‘users’
○ First focus on fastest algorithms, also have simplest models!

● But in the future more emphasize on general libraries and GPUs, developments ongoing
○ More challenging setup with demands on GPU/CPU compatible libraries and speed

4

Fast inference in HLT2: CPU
● Fast inference of relatively simple models (MLPs)

○ Shapes of models fully set at compile time
○ Custom implementation within Gaudi framework

■ Allows full control (of speed ups)
■ Typical MLP layers supported
■ Integration with (SIMD) event model

○ Evaluation using SIMD
■ Automatic batching when running

over ranges like std::vector with non-SIMD event model
○ Weights loaded during configuration from database

■ Allows flexibility with retraining and deployment

● Training infrastructure
○ API with PyTorch

■ Regression test to ensure similarity
■ Easily extendable to other training software

○ Example of training runs in CI / Jenkins 5

● Different beast than CPU
○ Typically different (and more) memory and dimensionality

considerations and constraints
○ Needs to run on both GPU and CPU

■ Both TensorRT and ONNXRuntime availability

● Number of neural-net implementations are only increasing
○ efforts going into right direction,

but currently no general infrastructure

● Effort ongoing here at Nikhef, lead by Roel Aaij, on making
available general inference libraries and infrastructure

6

See e.g. LHCB-FIGURE-2023-006

Fast inference in HLT1: GPU

https://cds.cern.ch/record/2859117

Offline use of ML at LHCb
● Most applications in analyses, typically rather

simple models are sufficient (BDTs, MLPs, …)
○ I’m not aware of more sophisticated models

here, or even need of?
● Use in simulation is almost production ready

○ VAEs, but also even more classical methods
like point libraries

○ Main care had to be taken in validation and
calibration

● Specific applications like flavour tagging
○ Main use is BDTs
○ Use of Transformers, GNNs, etc… are still in

development

● All need better infrastructure, just like online
(more libraries/standardization/testing/…)

7

ML R&D at LHCb
● Some experience so far at LHCb

○ Developing a tool versus looking for problems
■ How to do it versus not how to do it?

● By now, use of Lipschitz monotonic NNs used
widely in production, so not R&D anymore!
○ Triggers our main physics!

8

Blue sky
● Effort ongoing at (e.g. our own Maastricht!)

using quantum algorithms (including quantum ML)
● In the context of pattern recognition for track reconstruction,

with SURF, IBM and FASTER (WP3.2)
● Goal: explore what is possible, what are limitations

● Formulate problem as an Ising-like Hamiltonian connecting 2-hit segments:
○ Variational Quantum Eigensolver

 finding the ground state of |Segments on or off>
○ Variational Quantum Linear Solver

 solving a linearized set of equations (based on [JINST 18 P11028])
○ Challenge: finding an ‘ansatz’ (a suitable circuit structure):

→ Collaborate with UM comp.sci. dept (DACS), using q-Monte Carlo Tree Search
→ Brute-force on stoomboot

● Important for qML: embed QC with HPC, e.g. Snellius (with EuroHPC funding?)

9

http://doi.org/10.1088/1748-0221/18/11/P11028

TLDR
● At LHCb most unique application of ML is online

○ Fast inference is crucial and main driver op development
■ Usually custom inference is fastest,

but providing a good API to training libraries is essential!
■ But also trying external inference libraries!

● In general developing infrastructure to improve maintainability
○ Cannot overstate the importance of

■ Testing, pipelines, model storage, …
○ Both for CPU and GPU applications!
○ Making R&D easier

● Other applications in e.g. simulation and flavour tagging
○ Less unique? but very useful nonetheless

● R&D and blue sky approached tried and ongoing
○ Lipschitz monotonic NNs, can highly recommend!
○ In development

■ Quantum (ML) algorithms, e.g. for tracking (HL-LHC)

10

Backup

First level trigger at LHCb HLT1
● About 400 GPUs reduce the rate of incoming data

from 5 TB/s to approximately 100 GB/s
○ About order 100 kernels running,

with the Allen software project
○ Ballpark: with 500 GPUs, minimum requirement

is 60 kHz per GPU for 30 MHz non-empty bunch crossings
● Reconstruction

○ Charged particles in tracking detectors
■ clustering, tracking, vertexing

● Track fit and secondary vertex reconstruction
○ Muon stations / calorimeter reconstruction

■ Muon and Electron PID
● Including neural nets

■ Neutrals reconstruction
● Selection

○ focused on displaced charged tracks
■ Including neural nets for two-track combinations 12

Comput Softw Big Sci 4, 7 (2020)

https://arxiv.org/abs/1912.09161
https://link.springer.com/article/10.1007/s41781-020-00039-7

13

● Full, offline-quality (after alignment and calibration) reconstruction with full-quality track fit to
achieve high momentum resolution, calibrated PID and vertexing on CPUs
○ with improvements in muon ID, electron ID and bremsstrahlung reconstruction

● Order of 1000 selections
○ including dedicated reconstructions, selective information persistency, …

● Ballpark: about 200 Hz throughput needed assuming about 5000 servers with 1 MHz input

Second and final level trigger HLT2

Applications of ML in online environment of LHCb
● Classification of reconstructed objects (at all levels)

○ Reconstruction
■ Charged tracks

● Real vs fake (ghost rejection)
■ Type of charged tracks

● pion / muon / electron / …
○ Selection level

■ Higher level objects
● combination of tracks coming

from heavy flavour decays
■ Typically trained / used for selecting

specific signals with trigger lines
○ Typical feature counts of 10-20

● Other tasks like pattern recognition and
anomaly detection are possible and studied

14

LHCb-PUB-2017-011

Ghost rejection MLP from previous LHCb Run 2

https://cds.cern.ch/record/2255039?ln=en

ML infrastructure in online environment of LHCb
● Online environment needs

○ Most of all high speed!
○ Fast turn around time of training and deployment, …
○ Common tools / standardization

■ avoid customization / hard coded
solutions as much as possible

■ improve maintainability and ease of use
○ Production level code needs a lot of testing

■ Run ML pipelines in CI/CD (Gitlab/Jenkins)
● Also for fast turnaround time!

● Most needed in HLT2 (CPU)
○ Most applications, most interactions with ‘users’
○ First focus on fastest algorithms, also have simplest models!

● But in the future more emphasize on general libraries and GPUs, developments ongoing
○ More challenging setup with demands on GPU/CPU compatible libraries and speed

15

16

● Significant speed improvements have been achieved using
○ Multithreading / vectorization also in

this CPU-based software
○ Structure-of-Arrays

■ Reduce memory usage
○ Parallelization with SIMD

■ Single Instruction/Multiple Data
JINST 15 (2020) 06, P06018

○ Smarter, more selective algorithms
■ Pre-select on input of

time-intensive algorithms
○ Mainly used in reconstruction sequences

■ See reconstruction throughput
breakdown on the right before speed ups

● Developed new ML inference infrastructure to fully make use of that

HLT2 (CPU) throughput

https://arxiv.org/abs/1912.09901

Testing, pipelines and experience in production
● General aims achieved for HLT2 (CPU) infrastructure

○ Speeding up main classifiers (roughly 10% of reco timing) ✅
■ factor 2 - 3

○ Separate / fully optimized inference from training ✅
○ Maintained training pipeline ✅

● Running in production since start 2024 for HLT2 (CPU) infrastructure
○ Already used for fast retraining due to online needs

■ Retraining within a day,
cross-checked / released / deployed within a few days

○ Multiple developers picked it up and are expanding it
■ Feedback so far is that it’s easy to use and expand

● General aims achieved
○ Fast turnaround time ✅
○ Ease of use ✅

17

Training of model
● Provided in LHCb!4305 and Moore!2768

○ PyTorch interface
● This needs careful testing that these do the same

○ more on that later
● Convert model defined in header to python object

○ Using python binding (cppyy)
○ Write weights to file (json)

18

● Training script with PyTorch provided
○ See Hlt/RecoConf/options/hlt2_globalpid_training.py

https://gitlab.cern.ch/lhcb/LHCb/-/merge_requests/4305
https://gitlab.cern.ch/lhcb/Moore/-/merge_requests/2768
https://gitlab.cern.ch/lhcb/Moore/-/blob/mveghel-simdprobnn/Hlt/RecoConf/options/hlt2_globalpid_training.py?ref_type=heads

Speed tests
● Speed of ChargedProtoParticleMaker relative to master

○ 7% of reconstruction sequence (see here)!
○ dominated by ProbNN calculations

● Current models in master
○ TVMVA trained → hard coded evaluation using TMV_utils.h
○ between 47-49 input features

■ Basically ‘all’ ProtoParticle info (incl. duplication)
○ up to two hidden layers (between 50 and 70 neurons)

● New SIMD models
○ Large: 49 inputs

■ Two hidden layers (58 / 68 neurons resp.)
■ Fairest speed comparison

○ Pruned: 20 inputs
■ Two hidden layers (30 / 35 neurons resp.)
■ Realistic / reasonable scenario

● About 3 times faster!
○ Small: 7 inputs

■ Two hidden layers (12 / 12 neurons resp.)
■ Already very good performance! 19

https://lhcbpr-hlt.web.cern.ch/PerfTests/UpgradeThroughput/
https://gitlab.cern.ch/lhcb/LHCb/-/blob/master/Kernel/LHCbMath/include/Kernel/TMV_utils.h

Testing pipelines
● QMT testing of whole infrastructure, see Moore!2768

○ Inference (compilation + runtime) and inference / training closure (model evaluation through trainer)
■ Does the model produce the same result (reference)
■ Make sure (PyTorch) Python model is the same as C++ version

○ Training: data + model saving / loading
■ Two tests for

● data
● training

■ Make sure the full pipeline with training works

20

https://gitlab.cern.ch/lhcb/Moore/-/merge_requests/2768

General libraries for ML inference in HLT1 (GPU)
● Flexibility, maintainability

○ Hard/hand-coded ML inference is not flexible / not great to maintain
○ Platform to load standardized ML-model data format: ONNX

■ Supported by many (if not most) training software
■ At CPU (HLT2) level being integrated with ONNXRuntime

● Providing these features with inference on GPU
○ LHCb uses NVIDIA RTX A5000
○ TensorRT [link] from NVIDIA provides

■ Fast-inference platform / SDK
■ ONNX files can be read by it
■ Optimization possible within

package, like quantization

21

https://developer.nvidia.com/tensorrt

Throughput impact of TensorRT inference
● The baseline model tested

with respect to TensorRT batch size
○ Kernel overhead is main bottleneck

■ These MLPs are small
● At high batch size it seems getting

feasible to run a few copies of such neural nets!

22

Flavour tagging

23

