netherlands

LI center

in general and at Nikhef

Maarten van Veghel,

with input from Jacco de Vries

- U
Nik|hef ”

RIA

Context (of online use) of ML at LHCh

e LHCb studies mainly decays of beauty and charm hadrons with high signal rates

L=2x10%cm 2! (ATLAS/CMS) +/s=14TeV
L =2x10% ecm2s1 (LHCD)

H tt ZW bb ce
& L 4 9—& 9—@
1072 10° 102 10% 106 108

production rate [Hz]
LHCb-PROC-2022-010

e DAQ running at 40 MHz to cope with high signal rate
o Reconstruction and selection with as many features as possible, as early as possible
e Extract information from tracking sub-detectors and subsequently reconstruct and select
o Make use of Machine Learning (inference) at earliest level as much as possible
m Typically small (fast!) models with high-level quantities as input (around 10 - 20 typically)
o Focus on online application (first), as it is (probably?) most unique about the LHCb ML situation
m Resources almost all at LHCb

https://cds.cern.ch/record/2823780/

Data flow of the current detector LHCB-FIGURE-2020-016

REAL-TIME
ALIGNMENT &

CALIBRATION

5TB/s
30 MHz non-empty pp

0.5-1.5
PARTIAL DETECTOR) <

RECONSTRUCTION b
& SELECTIONS Sl

(GPU HLT1) 70-200 ; 6%
GB/s CALIB
EVENTS

FULL DETECTOR
RECONSTRUCTION . 26%

FULL
DETECTOR

READOUT

OFFLINE
PROCESSING

& SELECTIONS FULL
(CPU HLT2) 10 EVENTS
GB/s
8% ANALYSIS
. . wmm o PRODUCTIONS &
Direct software-based trigger! ooeO HEXS user ANALYsis
HLT1 (GPU) Full offline-quality reconstruction! S

HLT2 (CPU)

https://cds.cern.ch/record/2730181?ln=en

ML infrastructure in online environment of LHCb

e Online environment needs

o Most of all high speed!
o Fast turn around time of training and deployment, ...
o Common tools / standardization

m avoid customization / hard coded

solutions as much as possible

m improve maintainability and ease of use
o Production level code needs a lot of testing

m Run ML pipelines in CI/CD (Gitlab/Jenkins)

e Also for fast turnaround time!

& GitLab

e First developments now in production for HLT2 (CPU)
o Most applications, most interactions with ‘users’
o First focus on fastest algorithms, also have simplest models!

e Butin the future more emphasize on general libraries and GPUs, developments ongoing
o More challenging setup with demands on GPU/CPU compatible libraries and speed

Fast inference in HLT2: CPU

e Fast inference of relatively simple models (MLPs) SIMD | Instruction pool
o Shapes of models fully set at compile time

o Custom implementation within Gaudi framework ()
m Allows full control (of speed ups) o E
m Typical MLP layers supported 2 =
m Integration with (SIMD) event model % %
a S
o Evaluation using SIMD
—

m Automatic batching when running
over ranges like std::vector with non-SIMD event model
o Weights loaded during configuration from database

= Allows flexibility with retraining and deployment P pl:jthOﬂ

e Training infrastructure
o API with PyTorch O PyTO I'Ch
m Regression test to ensure similarity
m Easily extendable to other training software
o Example of training runs in Cl / Jenkins

Fast inference in HLT1: GPU

e Different beast than CPU
o Typically different (and more) memory and dimensionality
considerations and constraints
o Needs to run on both GPU and CPU
m Both TensorRT and ONNXRuntime availability

Test MLP running with TensorRT

90 A

«©
o
1

Default (2 hidden layers)
32-bit FP precision
—e— 1 instances

~
o
1

e Number of neural-net implementations are only increasing
o efforts going into right direction,
but currently no general infrastructure

—%¥— 2 instances
—A— 3 instances
—#— 4 instances
—&— 5 instances
-=-=- baseline

o))
o
1

HLT1 throughput [kHz]

50 1 LHCb simulation

e Effort ongoing here at Nikhef, lead by Roel Aaij, on making
available general inference libraries and infrastructure

2 4 6 8 10 12 14 16
maximum batch size of TensorRT [103]

See e.g. LHCB-FIGURE-2023-006

https://cds.cern.ch/record/2859117

Offline use of ML at LHGh

Performance
e Most applications in analyses, typically rather A
simple models are sufficient (BDTs, MLPs, ...) P
o I’'m not aware of more sophisticated models Ea0
=
here, or even need of? "o
e Use in simulation is almost production ready
. 0
o VAEs, but also even more classical methods __| S
like point libraries
o Main care had to be taken in validation and | Fast simulations & ML conerotr
. . Fast simulations with Geant4...
calibration stop detailed simulation in a particular
° S if] licati like fl t . region of the detector,
PeCITIC applications like Tlavour agglng use machine learning to produce a similar
o Main use is BDTs R
0] Use of Tl’anSformel’S, GNNS, etC... are Stlll in What happens in Geant4? What is actually stored? Detacoon

development ...and machine learning

train a ML model to be able to produce the
same output as Geant4,

e All need better infrastructure, just like online
(more libraries/standardization/testing/...)

produce hits by running inference on the
generator,

Il interface to machine learning libraries
needed to perform the inference!

113th LHCb week

Michat Mazurek

CaloML fast simulation in Gauss-on-Gaussino

Motivations

ML R&D at LHGh

Graph Neural Network (GNN)-based track-finding pipeline based on the work of Exa.Trkx (Eur. Phys.
J. C 81, 876 (2021))
+ Demonstrated near-linear inference time w.r.t. # hits

[] Some eXperlenCe SO far at LHCb + Conventional algorithms are worse-than-quadratic

« Increase in instaneneous luminosity in future upgrades over the next decade

0 Deve|0plng a tOO| VeI'SUS |OOk|ng fOI’ prOblemS — need for even more high-throughput track-finding algorithms
X 3 « High-parallelisation potential - compatible with current GPU-based Allen trigger
| HOW to do It Versus nOt hOW to do It? « Future implementation in Allen = allow like-for-like comparison with conventional algorithms
® By n OW, use Of Lipsch itz monotonic N NS used + Representation of tracks with a graph quite natural Pure graph representation

widely in production, so not R&D anymore! || } } l | - >‘—{>é>‘

o Triggers our main physics!
gg phy &

i i = ETX4VELO
The topological triggers @ HLT2 .~ 5% = Computational performance N —

[2306.09873, 2312.14265] 100
[———— %
[re— d
§ 10°
LHCb Simulation A= None LHCb Simulation A=1.15 <
T T T T T T T T T T T T T T T T 5
10 - 1.0 10| -1 1.0 8 .
————
—— - S 10
B . . 3
s —— e . o —3 Jos osk Jos ._E —e— ETX4VELO ONNX Runtime FP32
— ——) . —+— ETX4VELO TensorRT FP32
9 s, —— @ °) . { P 10%{ —— ETX4VELO TensorRT INT8
- 2 £ —— | -~ Allen
=0.6 = ® ~0.6= =06 —_— H0.62
B S — = = + > VELO decoding Embedding k-NN GNN VELO tracks
z —— = £ — = Steps
< —— = £ 5
o4 DO 0 H04% 0.4 Ho04%
&= < & <
— ——
02} == B® = D*"7*v; hadronic =T 02 02} B’ — D* v, hadronic o2
—_— s —
0.0 L= 1 1 1 r’_‘:—f: 0.0 0.0 Lt 1 1 1 1 1 1 1 0.0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
log(Flight Distance x?) [Arbitrary Units] log(Flight Distance x?) [Arbitrary Units]
+ Cut @ €705 = 60% + Cut @ 795 = 80% + Cut @795 = 60% + Cut @9 =80%
Cut @ 795 = 70% + Cut @ 705 = 90% + Cut @ €798 = 70% + Cut @ T8 = 90%

Unconstrained NN Lipschitz Monotonic NN
Blaise Delaney (MIT) on behalf of LHCb 18|

Blue sky

e [Effort ongoing at (e.g. our own Maastricht!)
using quantum algorithms (including quantum ML)

e |n the context of pattern recognition for track reconstruction
with SURF, IBM and FASTER (WP3.2)

e Goal: explore what is possible, what are limitations

e Formulate problem as an Ising-like Hamiltonian connecting 2-hit segments:
o Variational Quantum Eigensolver
finding the ground state of ISegments on or off>
o Variational Quantum Linear Solver
solving a linearized set of equations (based on [JINST 18 P11028))
o Challenge: finding an ‘ansatz’ (a suitable circuit structure):
= Collaborate with UM comp.sci. dept (DACS), using g-Monte Carlo Tree Search
= Brute-force on stoomboot

e Important for gML: embed QC with HPC, e.g. Snellius (with EuroHPC funding?)

http://doi.org/10.1088/1748-0221/18/11/P11028

TLDR

e At LHCb most unique application of ML is online
o Fastinference is crucial and main driver op development
m Usually custom inference is fastest,
but providing a good API to training libraries is essential!
m But also trying external inference libraries!
e In general developing infrastructure to improve maintainability
o Cannot overstate the importance of
m Testing, pipelines, model storage, ...
o Both for CPU and GPU applications!
o Making R&D easier
e Other applications in e.g. simulation and flavour tagging
o Less unique? but very useful nonetheless
e R&D and blue sky approached tried and ongoing
o Lipschitz monotonic NNs, can highly recommend!
o In development
m Quantum (ML) algorithms, e.g. for tracking (HL-LHC)

10

First level trigger at LHCh HLT1

e About 400 GPUs reduce the rate of incoming data
from 5 TB/s to approximately 100 GB/s
o About order 100 kernels running,
with the Allen software project
o Ballpark: with 500 GPUs, minimum requirement
is 60 kHz per GPU for 30 MHz non-empty bunch crossings
e Reconstruction
o Charged particles in tracking detectors
m clustering, tracking, vertexing
e Track fit and secondary vertex reconstruction
o Muon stations / calorimeter reconstruction
m Muon and Electron PID
® Including neural nets
m Neutrals reconstruction

e Selection
o focused on displaced charged tracks
m /ncluding neural nets for two-track combinations

Comput Softw Big Sci 4. 7 (2020)

LHCb

40 Thit/s ¢ 30 MHz

170 servers (event building j

[GPUs HILT1

J

1-2 Thit/s ¢ ~1 MHz

\\

Server farm

J

buffer on disk
calibration and alignment
(HLT2)
80 Gbit/s ¢

Tier-0

12

https://arxiv.org/abs/1912.09161
https://link.springer.com/article/10.1007/s41781-020-00039-7

Second and final level trigger HLT2

e Full, offline-quality (after alignment and calibration) reconstruction with full-quality track fit to
achieve high momentum resolution, calibrated PID and vertexing on CPUs
o with improvements in muon ID, electron ID and bremsstrahlung reconstruction
e Order of 1000 selections
o including dedicated reconstructions, selective information persistency, ...
e Ballpark: about 200 Hz throughput needed assuming about 5000 servers with 1 MHz input

Char%elldr;?rzl;;?lj:;nfggtéc:ion i bFut" trac::ktf(i)t: Particle identification:
: - est resolution, | —
VELO, UT, SciFi d background rejection RICH, MUON, ECAL

AW

Side View gcaL HCAL M4 M5 A
M3 » ”

A\ Neutral reconstruction:
= e ECAL

[ricar
A UTy

-
} !CERN—LHCC-2018—014, LHCB-TDR-018 J
R T 13

Applications of ML in online environment of LHChH

e Classification of reconstructed objects (at all levels)
o Reconstruction
m Charged tracks

e Real vs fake (ghost rejection) Ghost rejection MLP from previous LHCb Run 2
m Type of charged tracks < 25000 & T T - T .
[] pion / muon / electron / ; E LHCb 0‘*_ aCaff:nc(workw/domainadap!alinn E
" L 20000 __ = - Caffe network w/o domain adaptation __:
O Selection |eVe| ~ E = ~ ghost probability]
m Higher level objects 3 beep B &
< = -~ s e - 5
e combination of tracks coming = 10000 E— TR i T T
= - = - m
from heavy flavour decays S E & - 3
m Typically trained / used for selecting 2y T T ~
specific signals with trigger lines oF . A TS .
480 500 520

o Typical feature counts of 10-20
e Other tasks like pattern recognition and
anomaly detection are possible and studied

2
LHCb-PUB-2017-011 Mgy [MeV/c7]

https://cds.cern.ch/record/2255039?ln=en

ML infrastructure in online environment of LHCb

Online environment needs
o Most of all high speed!
o Fast turn around time of training and deployment, ...
o Common tools / standardization
m avoid customization / hard coded
solutions as much as possible
m improve maintainability and ease of use
Production level code needs a lot of testing
m Run ML pipelines in CI/CD (Gitlab/Jenkins)
e Also for fast turnaround time!
Most needed in HLT2 (CPU)
o Most applications, most interactions with ‘users’
o First focus on fastest algorithms, also have simplest models!
But in the future more emphasize on general libraries and GPUs, developments ongoing
o More challenging setup with demands on GPU/CPU compatible libraries and speed

& GitLab

(@)

15

HLT2 (CPU) throughput

e Significant speed improvements have been achieved using

o Multithreading / vectorization also in
this CPU-based software
o Structure-of-Arrays
m Reduce memory usage

o Parallelization with SIMD Protoparticies
m Single Instruction/Multiple Data Cali;?::d
JINST 15 (2020) 06, PO6018 Converters

o Smarter, more selective algorithms Downstream

HLT1

m Pre-select on input of
time-intensive algorithms

Framework
Match
o Mainly used in reconstruction sequences Muon

m See reconstruction throughput
breakdown on the right before speed ups

LHCb Simulation

HLT2 Throughput Rate 504.9 Hz

10 15 20 25
Timing fraction within the HLT2 sequence [%]

e Developed new ML inference infrastructure to fully make use of that

16

https://arxiv.org/abs/1912.09901

Testing, pipelines and experience in production

e General aims achieved for HLT2 (CPU) infrastructure
o Speeding up main classifiers (roughly 10% of reco timing)
m factor2-3
o Separate / fully optimized inference from training

© Maintained training pipeline . . G it La b

e Running in production since start 2024 for HLT2 (CPU) infrastructure
o Already used for fast retraining due to online needs
m Retraining within a day,
cross-checked / released / deployed within a few days
o Multiple developers picked it up and are expanding it
m Feedback so faris that it’s easy to use and expand

e General aims achieved
o Fast turnaround time
o Ease of use

17

Training of model

Provided in LHCb!4305 and Moorel2768

o

PyTorch interface

This needs careful testing that these do the same

@)

more on that later

Convert model defined in header to python object

o

@)

Using python binding (cppyy)
Write weights to file (json)

from cppyy import gbl
from LHCbMath.VectorizedML import Sequence

ProbNN__Testing__Model = Sequence(gbl.ProbNN.Testing.Model())

Training script with PyTorch provided

@)

See HIt/RecoConf/options/hit2 globalpid training.py

N B
) O ©

ol
<)

O Ol Ll Ol Ol
RO NP

o <

o Ol ol
o

4
o @

40

NI

N

import torch
from torch import nn

class Sequence(nn.Module):

def

def

__init__(self, model):
super().__init__()
mod = model.model()
mystack = []

def get_torch_layer(layer):

tlayer = None
layer_type = layer.name()[:-2]
if layer_type == "Linear":
tlayer = nn.Linear(layer.nInputs(), layer.nOutputs())
else:

layer_dict = {"Sigmoid": nn.Sigmoid, "ReLU": nn.RelLU}
tlayer = layer_dict[layer_typel()
return tlayer

from collections import OrderedDict
for i in range(mod.nLayers()):
layer = mod.get_layer(i)
mystack.append((layer.name(), get_torch_layer(layer)))
self._stack = nn.Sequential(OrderedDict(mystack))
feats = model.features()
self._features = [feats.name(i) for i in range(feats.size())]

forward(self, x):
return self._stack(x)

18

https://gitlab.cern.ch/lhcb/LHCb/-/merge_requests/4305
https://gitlab.cern.ch/lhcb/Moore/-/merge_requests/2768
https://gitlab.cern.ch/lhcb/Moore/-/blob/mveghel-simdprobnn/Hlt/RecoConf/options/hlt2_globalpid_training.py?ref_type=heads

RICH
TrackFit

Seeding
Protoparticles
Calorimeter

e Speed of ChargedProtoParticleMaker relative to master

Converters

o 7% of reconstruction sequence (see here)! Forward
o dominated by ProbNN calculations D°W"S"::Tr:
e Current models in master Framework | 0.8
o TVMVA trained = hard coded evaluation using TMV__utils.h “:4“‘ LHCb Simulation
o between 47-49 input features Other] 0.31 HLT2 Throughput Rate 485.0 Hz
m Basically ‘all’ ProtoParticle info (incl. duplication) 0 S e Bt i i 112 seqaer?® el %
o uptotwo hidden layers (between 50 and 70 neurons)
e New SIMD models
o Large: 49 inputs 121
m Two hidden layers (58 / 68 neurons resp.) 1.0 1
m Fairest speed comparison
o Pruned: 20 inputs £089
m Two hidden layers (30 / 35 neurons resp.) g 0.6 -
m Realistic / reasonable scenario ;3
e About 3 times faster! ™ o
o Small: 7 inputs 021 °
m Two hidden layers (12 / 12 neurons resp.) 0.0
0 10 20 30 40 50

m Already very good performance!

number of input features

https://lhcbpr-hlt.web.cern.ch/PerfTests/UpgradeThroughput/
https://gitlab.cern.ch/lhcb/LHCb/-/blob/master/Kernel/LHCbMath/include/Kernel/TMV_utils.h

Testing pipelines

e QMT testing of whole infrastructure, see Moore!2768
o Inference (compilation + runtime) and inference / training closure (model evaluation through trainer)
m Does the model produce the same result (reference)
m Make sure (PyTorch) Python model is the same as C++ version
o Training: data + model saving / loading
m Two tests for
e data
e training
m Make sure the full pipeline with training works

Defined model with features: ['EcalPIDe', 'ElectronShowerDLL', 'BremPIDe', 'HcalPIDe', 'RichDLLe', 'TrackChi2PerDoF', 'TrackGhostProb']
model coverted to PyTorch: Sequence(
(_stack): Sequential(

(Linear_0): Linear(in_features=7, out_features=12, bias=True)

(ReLU_1): ReLU()

(Linear_2): Linear(in_features=12, out_features=12, bias=True)

(ReLU_3): ReLU()

(Linear_4): Linear(in_features=12, out_features=1, bias=True)

(Ssigmoid_5): Sigmoid()

difference between model and ref (prob; default) is -0.0000 +/- 0.0001
difference between model and ref (DLL) is -0.00 +/- 0.00
IAUC of prediction is 0.99650 and of reference is 0.99650

https://gitlab.cern.ch/lhcb/Moore/-/merge_requests/2768

General libraries for ML inference in HLT1 (GPU)

e Flexibility, maintainability
o Hard/hand-coded ML inference is not flexible / not great to maintain
o Platform to load standardized ML-model data format: ONNX
m Supported by many (if not most) training software
m At CPU (HLT2) level being integrated with ONNXRuntime ONN X

e Providing these features with inference on GPU
o LHCb uses NVIDIA RTX A5000
o TensorRT [link] from NVIDIA provides
m Fast-inference platform / SDK
m ONNXfilescanberead byit «
m Optimization possible within
package, like quantization

Network

w

. Kernel Auto-Tuning
Selects best data layers and algorithms
based on target GPU platform

®
®

[I
ee o0

o 4. Dynamic Tensor Memory

Optimized Inference memory
Engine
5. Multi-Stream Execution

streams in parallel

Mini ootprint and re-uses

Scalable design to process multiple input

21

https://developer.nvidia.com/tensorrt

Throughput impact of TensorRT inference

e The baseline model tested
with respect to TensorRT batch size
o Kernel overhead is main bottleneck
m TThese MLPs are small
e At high batch size it seems getting
feasible to run a few copies of such neural nets!

HLT1 throughput [kHz]

Test MLP running with TensorRT

Default (2 hidden layers)
32-bit FP precision
1 instances
—%¥— 2 instances
—A— 3 instances
—8— 4 instances
—&— 5 instances
—-=—=- baseline

;

60 A

50 A LHCb simulation

2 4 6 8 10 12 14 16
maximum batch size of TensorRT [103]

22

SS pion

PV
‘ SS proton
(SS kaon)
By

SV

b—c
b— X~

w

\% _

opposite side

— . /r‘ OS kaon
\) OS muon

OS electron

OS vertex charge

OS charm

23

