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Once upon a time in the Universe...
Only picoseconds after the Big Bang, the
Universe experienced a phase transition into
a state of lower energy, in which nearly all
fundamental particles became massive by
interacting with the Higgs field.

Image: NASA/WMAP Science Team

About 13.8 billion years later...

First came the Higgs-dependence Day...
4 July 2012: the ATLAS and CMS collaborations at CERN’s Large Hadron Collider
(LHC) announced the discovery of a spin-0 particle with a mass of about 125 GeV.

Images: ATLAS Collaboration, Phys. Lett. B 716 (2012) 1.

Then came the Nobel prize.
8 October 2013: the Nobel prize in physics was awarded to Englert and Higgs ”for the
theoretical discovery of a mechanism that contributes to our understanding of the origin of
mass of subatomic particles, and which recently was confirmed through the discovery of the
predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s LHC”.
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The Higgs sector in the Standard Model
The Standard Model (SM) has been vastly explored and confirmed by the
LHC experiments. At its core lies a scalar sector, responsible for electroweak
symmetry breaking and mass generation.
Since the Higgs boson discovery in 2012, the scalar sector has been greatly
studied by ATLAS and CMS.

Image: https://visit.cern/shop
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The Higgs sector in the Standard Model
The Standard Model (SM) has been vastly explored and confirmed by the
LHC experiments. At its core lies a scalar sector, responsible for electroweak
symmetry breaking and mass generation.
Since the Higgs boson discovery in 2012, the scalar sector has been greatly
studied by ATLAS and CMS. All of it? No, the indomitable Higgs potential
has not yet been conquered by the LHC physicists.
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The Higgs sector in the Standard Model
In the mathematical framework of the SM, the Higgs field is a complex Higgs
doublet 𝜙 and the Higgs sector is described by:

ℒ = |𝐷𝜇𝜙|2 − 𝑉 (𝜙).

The first term describes the
coupling of 𝜙 to gauge bosons:

The second term, 𝑉 (𝜙), is the Higgs potential. In its minimal form, it is:
𝑉 (𝜙) = −𝜇2𝜙2 + 𝜆𝜙4.

If 𝜇2 and 𝜆 are both positive, the
minimum of the Higgs potential lies
at a vacuum expectation value 𝑣 ≠ 0.

Universe = a hot soup
of massless stuff

Universe = a cool
place to live in

All sketches from
www.quantumdiaries.org
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The ultimate probe of the Higgs sector

The shape of the Higgs potential, which
is controlled by the parameters 𝜇2 and 𝜆,
completely determines the properties of
the Higgs sector.

< 𝜙0 > = 1√
2

( 0
𝑣 ) , 𝑣 = √𝜇2/𝜆.

SM: 𝑉 (𝜙) = −𝜇2𝜙2 + 𝜆𝜙4
𝜙→𝑣+𝐻

⊃ 𝜆𝑣2𝐻2 + 𝜆𝑣𝐻3 + 1
4

𝜆𝐻4

mass term self-interaction terms (never observed)
1
2 𝑚2

𝐻𝐻2

⟹ To fully test the Higgs sector, one must observe the self-interaction term(s)
and measure the Higgs boson self-coupling 𝜆 via Higgs boson pair production.
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Why does it matter?
▶ Experimental data only provides information on the position of the

minimum of the Higgs potential, in which our Universe lives.
▶ The (unconstrained) shape of the Higgs potential has implications beyond

the mass-generation mechanism, in particular on the vacuum state of the
Universe.

▶ In the absence of new physics that may affect the Higgs sector, there is a
(borderline) possibility that our Universe is in a metastable state, i.e. a
false vacuum.

Nature 607 (2022) 41 APS/Alan Stonebraker Phys. Rev. Lett. 115 (2015) 201802
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Why does it matter?

Sketches adapted from www.quantumdiaries.com

There are already many (indirect) hints of
new physics beyond the SM! And its Higgs
sector has serious short-comings:

▶ Why so many orders of magnitude across
the fermion couplings to the Higgs field?

▶ 𝑚𝐻 should be driven to a very large scale
by quantum loop corrections, why such a
remarkably precise cancellation against
the bare mass?

▶ Why should the Higgs potential have a
minimal form, and could there be an
extended Higgs sector?
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Higgs boson pair production at the LHC

Non-resonant pairs of Higgs bosons (HH) arise from several diagrams, some of
which interfere destructively. Very small cross-sections!

Gluon-gluon fusion: 𝜎SM
ggF ≃ 31 fb ± 3%(PDF + 𝛼𝑠) +6%

−23%(scale + 𝑚𝑡) [13 TeV].

g

g H

H

H

κt κλ

Vector-boson fusion: 𝜎SM
VBF ≃ 1.7 fb ± 2.1%(PDF + 𝛼𝑠) +0.03%

−0.04%(scale) [13 TeV].

H

H

q q

q q

V

V

κ2V

Other production modes (e.g. VHH, ttHH) have even smaller cross-sections.
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Non-resonant HH mass distribution(s)
▶ HH events from the self-interaction diagrams are soft.

⇒ Challenge for triggers and detector object reconstruction/identification!
▶ 𝜅𝜆 ≠ 1 modifies the cross-section and kinematical properties of HH pairs.

⇒ Allows to disentangle 𝜅𝜆 hypotheses (it also holds for other couplings,
e.g. 𝜅2𝑉 in VBF).

ATLAS Physics Briefing: Twice the Higgs, twice the challenge Phys. Lett. B 800 (2020) 135103
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HH decays and search channels

Image: @PhysicsCakes (Twitter)

Multitude of Higgs boson decays ⇒ 𝒪(multitude2) of
HH search channels, each with specific experimental
challenges and sensitivity reach.

▶ Not a single ”golden” channel;

Image by Katharine Leney
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HH decays and search channels

Image: @PhysicsCakes (Twitter)

Multitude of Higgs boson decays ⇒ 𝒪(multitude2) of
HH search channels, each with specific experimental
challenges and sensitivity reach.

▶ Not a single ”golden” channel;
▶ Three silver bullets!
▶ Additional channels with sizeable

sensitivity:
▶ 2𝑏 + 2ℓ + 𝐸miss

T ,
▶ multi-lepton/photon final states.

Image by Katharine Leney
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Self-interaction and single Higgs bosons

▶ Single Higgs boson processes do not depend on 𝜅𝜆 at LO.
▶ However, NLO electroweak loops allow 𝜅𝜆 to affect single Higgs boson

production and decay modes.
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HH → bbbb

▶ Highest branching ratio... but
large multi-jet background!

▶ Mostly probes large 𝑚𝐻𝐻 ⇒
sensitivity to HH events with
large 𝑝H

T.

▶ Phys. Rev. D 108 (2023) 052003
(ggF and VBF resolved topologies)

▶ Phys. Lett. B 858 (2024) 139007
(VBF boosted topologies)
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HH → bbbb – resolved topologies
▶ Trigger events with ≥2 b-jets.
▶ SR = two b-jet pairs compatible with a

Higgs boson (pairing based on angular
distances).

▶ Data-driven background model based on
SR event re-weighting:
• 2b → 4b re-weighting function derived
with machine-learning techniques in CRs
around the SR.

▶ ggF- and VBF-like event categories based
on forward jets and kinematic properties
of HH.

▶ Fit 𝑚𝐻𝐻 in all categories.

Obs. (exp.) 95% CL upper limit on
𝜎ggF+VBF

HH = 5.4 (8.1) × SM prediction.
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HH → bbbb – VBF boosted topologies
▶ Trigger events with a large-R jet.
▶ SR = two 2b-tagged large-R jets compatible

with a Higgs boson + two VBF jets.
▶ Data-driven background model based on SR

event re-weighting:
• 1𝐽𝐻𝑏𝑏 → 2𝐽𝐻𝑏𝑏 re-normalisation derived
in the CR around the SR.

▶ Fit a BDT trained with 𝜅2𝑉 = 0 in the SR.
▶ Combination with ggF and VBF categories

of the resolved HH → bbbb search.
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HH → bb𝜏𝜏

▶ Intermediate branching ratio but clean
final state with moderate backgrounds!

▶ Sensitive to a broad range of 𝜅𝜆 values.

▶ Phys. Rev. D 110 (2024) 032012

▶ bb𝜏ℎ𝜏ℓ and bb𝜏ℎ𝜏ℎ final states + further event categories:
• 3 regions based on the trigger strategy (1 𝜏ℎ𝜏ℎ & 2 𝜏ℎ𝜏ℓ);
• 1 VBF-like & 2 ggF-like (low/high-𝑚𝐻𝐻) sub-categories per region;
• 1 CR to constrain the 𝑍+bb/cc background.

▶ Background modelling:
• 𝑡 ̄𝑡 and Z+jets: simulation with data-driven corrections;
• data-driven method if a gluon- or quark-initiated jet mimics 𝜏ℎ.

▶ Signal extraction: BDT classifiers in the 9 SRs, 𝑚ℓℓ in the CR.
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HH → bb𝜏𝜏
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HH → bb𝜏𝜏
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HH → bb𝛾𝛾

▶ Tiny branching ratio but very clean
signature: excellent 𝑚𝛾𝛾 resolution
and small backgrounds!

▶ Enhanced sensitivity at low 𝑚𝐻𝐻,
hence to the Higgs self-interaction.

▶ JHEP 01 (2024) 066

▶ Di-photon trigger and event selection + 2 b-jets.
▶ 7 event categories based on:

• 𝑚∗
𝑏𝑏𝛾𝛾 (low vs high);

• classification BDT output ranges, trained on
different signal hypotheses.

▶ No dedicated VBF category but the mass and Δ𝜂
of VBF-tagged jets are inputs to the BDTs. 0 0.2 0.4 0.6 0.8 1
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HH → bb𝛾𝛾
▶ Signal and backgrounds:

• HH and single-H shapes from simulation;
• continuum background shape from data.

▶ Signal extraction through parametric fits of 𝑚𝛾𝛾.
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HH = 4.0 (5.0) × SM prediction.
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HH → bb𝛾𝛾
▶ Signal and backgrounds:

• HH and single-H shapes from simulation;
• continuum background shape from data.

▶ Signal extraction through parametric fits of 𝑚𝛾𝛾.
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HH → 2𝑏 + 2ℓ + 𝐸miss
T

▶ Captures HH di-lepton decays to bbWW, bbZZ and bb𝜏ℓ𝜏ℓ.
▶ Large 𝑡 ̄𝑡 background for ggF HH but only small backgrounds in VBF topologies.

▶ JHEP 02 (2024) 037

▶ 2 𝑒/𝜇 and 2 b-jets, no
requirement on 𝐸miss

T ;
▶ SRs and CRs based on 𝑚ℓℓ

and 𝑚𝑏𝑏;
▶ VBF and ggF categories.
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HH = 9.7 (16.2) × SM prediction.
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HH → 2𝑏 + 2ℓ + 𝐸miss
T

▶ Captures HH di-lepton decays to bbWW, bbZZ and bb𝜏ℓ𝜏ℓ.
▶ Large 𝑡 ̄𝑡 background for ggF HH but only small backgrounds in VBF topologies.

▶ JHEP 02 (2024) 037

▶ 2 𝑒/𝜇 and 2 b-jets, no
requirement on 𝐸miss

T ;
▶ SRs and CRs based on 𝑚ℓℓ

and 𝑚𝑏𝑏;
▶ VBF and ggF categories.

mll75 GeV15 GeV 110 GeV

mbb

40 GeV

210 GeV

ee + μμ

mll15 GeV 110 GeV

mbb

40 GeV

210 GeV

eμ + μe

Fit of highest-score BDT (DNN) bins and CR
event yields in the VBF (ggF) categories.

1

10

210

310

410

510E
ve

nt
s

ATLAS
-1 = 13 TeV, 140 fbs

miss
TE 2b+2l+→HH 

Post-fit

Data Bkg. Unc.
Z+jets (HF) tt
Wt Single Higgs
Fakes Other

 = 9.7)µHH (

-CR (VBF)

tt Z+HF-CR (VBF)

Wt-CR (VBF)

VBF-SR 5

VBF-SR 4

VBF-SR 3

VBF-SR 2

VBF-SR 1

-CR (ggF)

tt Z+HF-CR (ggF)

Wt-CR (ggF)

ggF-SR 7

ggF-SR 6

ggF-SR 5

ggF-SR 4

ggF-SR 3

ggF-SR 2

ggF-SR 1

0.4
0.6
0.8

1
1.2
1.4
1.6

D
at

a 
/ B

kg
. p

re
d.Obs. (exp.) 95% CL upper limit on

𝜎ggF+VBF
HH = 9.7 (16.2) × SM prediction.

A. Ferrari (UU) Nikhef, Amsterdam, 25/10/2024 26 / 50

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-02/


Multi-lepton HH decays

▶ Captures HH decays to bbZZ, 4V, VV𝜏𝜏, 4𝜏, VV𝛾𝛾 and 𝛾𝛾𝜏𝜏.
▶ Multi-lepton final states have small associated backgrounds.

▶ JHEP 08 (2024) 164

▶ Event categories based on 𝑁𝛾, 𝑁𝜏ℎ
and 𝑁ℓ;

▶ Signal = ggF+VBF HH in all categories;
▶ Prompt leptons and true 𝜏ℎ: simulation with

normalisation factors from dedicated CRs;
▶ Non-prompt and wrong-charge leptons, fake 𝜏ℎ

and non-resonant 𝛾𝛾 processes: data-informed
corrections to simulation.

▶ Fit of BDT scores (ML) and 𝑚𝛾𝛾 (𝛾𝛾+ML).

Obs. (exp.) 95% CL upper limit on
𝜎ggF+VBF

HH = 17 (11) × SM prediction.
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Multi-lepton HH decays

▶ Captures HH decays to bbZZ, 4V, VV𝜏𝜏, 4𝜏, VV𝛾𝛾 and 𝛾𝛾𝜏𝜏.
▶ Multi-lepton final states have small associated backgrounds.

▶ JHEP 08 (2024) 164

▶ Event categories based on 𝑁𝛾, 𝑁𝜏ℎ
and 𝑁ℓ;

▶ Signal = ggF+VBF HH in all categories;
▶ Prompt leptons and true 𝜏ℎ: simulation with

normalisation factors from dedicated CRs;
▶ Non-prompt and wrong-charge leptons, fake 𝜏ℎ

and non-resonant 𝛾𝛾 processes: data-informed
corrections to simulation.

▶ Fit of BDT scores (ML) and 𝑚𝛾𝛾 (𝛾𝛾+ML).

Obs. (exp.) 95% CL upper limit on
𝜎ggF+VBF

HH = 17 (11) × SM prediction.
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• Introduction

• Higgs boson pairs: production and decay modes

• ATLAS results: individual HH searches

• Combined HH searches in ATLAS and comparison with CMS

• Beyond the Higgs self-interaction

• Beyond the LHC Run 2

• Conclusion
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Putting it all together...
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No golden HH search channel: combinations are key.
▶ Phys. Rev. Lett. 133 (2024) 101801
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HH combination: limits on 𝜎HH
ggF+VBF
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▶ Obs. (exp.) 95% CL combined limit: 2.9 (2.4) × SM prediction.

▶ Expected limit reduced by 17% w.r.t Phys. Lett. B 843 (2023) 137745 (13%
from analysis improvements of the three silver-bullet HH searches, 4% from
adding two new channels).

▶ Slightly different limits for HH → 2𝑏 + 2ℓ + 𝐸miss
T due to a different treatment

of negative best-fit signal strengths and signal MC statistical uncertainties.
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HH combination: limits on 𝜎HH
ggF & 𝜎HH

VBF
When deriving the limits on ggF (VBF) HH, the VBF (ggF) HH production
cross-section is fixed to the SM predicted value.
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HH combination: constraints on 𝜅𝜆
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▶ Obs. (exp.) 95% CI for 𝜅𝜆 = [-1.2; 7.2] ([-1.6; 7.2]).
▶ When profiling 𝜅𝜆, other Higgs boson couplings are set to their SM values.
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Comparison with CMS
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▶ Results from Nature 607, 60-68 (2022).
▶ Similar sensitivity to the HH signal strength (exp. 2.5, obs. 3.4) but the leading

channel is HH → bbbb, in which CMS has a search for ggF boosted topologies.
▶ Obs. 95% CI for 𝜅𝜆 = [-1.24; 6.49].
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Comparison with CMS
CMS also published constraints on the Higgs self-interaction by combining
single- and double-Higgs-boson productions [CMS-HIG-23-006].
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▶ Obs. (exp.) 95% CI for 𝜅𝜆 = [-1.4; 7.8] ([-2.3; 7.8]) when floating all
coupling modifiers.

▶ ATLAS performed an H+HH combination in Phys. Lett. B 843 (2023) 137745:
obs. (exp.) 95% CI for 𝜅𝜆 = [-1.4; 6.1] ([-2.2; 7.7]).
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VVHH quartic coupling
Searches for VBF Higgs boson pair production allow to
uniquely probe the VVHH quartic coupling.
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▶ Obs. (exp.) 95% CI for 𝜅2𝑉 = [0.6; 1.5] ([0.4; 1.6]), dominated
by the VBF HH → bbbb search in boosted topologies.

CMS excludes the 𝜅2𝑉 = 0 hypothesis with a significance
of 6.6 standard deviations!
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HH in Effective Field Theories
Effective Field Theories (EFTs) provide a model-independent framework to
parametrise deviations from the SM, where higher-dimension operators modify
the interactions of the SM particles.

In the Higgs EFT (HEFT) formalism, anomalous couplings are expected to be
the dominant source of new physics. Also, the couplings to single Higgs bosons
and Higgs boson pairs are separate → most suitable for HH interpretations.

Image by Christina Dimitriadi
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HH in Effective Field Theories
ATLAS has performed HEFT re-interpretations of HH searches in the bbbb,
bb𝜏𝜏 and bb𝛾𝛾 decay channels, as well as their combination.

Seven HEFT benchmarks are used, with representative 𝑚𝐻𝐻 shape features,
from SciPost Phys. Comm. Rep. 2 (2024).
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HH in Effective Field Theories
ATLAS has performed HEFT re-interpretations of HH searches in the bbbb,
bb𝜏𝜏 and bb𝛾𝛾 decay channels, as well as their combination.

Constraints on the 𝑐𝑔𝑔ℎℎ and 𝑐𝑡𝑡ℎℎ anomalous couplings (all others are set to
their SM value):
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HH in Effective Field Theories
ATLAS has performed HEFT re-interpretations of HH searches in the bbbb,
bb𝜏𝜏 and bb𝛾𝛾 decay channels, as well as their combination.

Constraints on the anomalous couplings corresponding to HHx vertices (all
others are set to their SM value):
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▶ Tension with the SM, arising mostly from a low-mass excess in the
HH → bbbb search channel.
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Resonant HH searches
Pairs of Higgs bosons can also be produced via
the decay of a hypothetical heavy resonance,
and many BSM theories predict the existence
of such heavy particles.

Summary of individual and combined resonant HH limits (𝑏𝑏𝛾𝛾, 𝑏𝑏𝜏𝜏, 𝑏𝑏𝑏𝑏):
the largest excess in the combined limit is found at 1.1 TeV and corresponds
to a local (global) significance of 3.2𝜎 (2.1𝜎).
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Resonant HH searches
Pairs of Higgs bosons can also be produced via
the decay of a hypothetical heavy resonance,
and many BSM theories predict the existence
of such heavy particles.

Searches for resonant HH production can then be interpreted in various BSM
scenarios with an extended Higgs sector, e.g. in the MSSM (left) and in the
type-I 2HDM for cos(𝛽 − 𝛼) = −0.1 (right).

Phys. Rev. Lett. 132 (2024) 231801
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HH prospects at the HL-LHC

A major task of the HL-LHC is to
further explore the Higgs sector, in
particular establish and measure the
Higgs self-interaction.

Both images by Elizabeth Brost
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HH prospects at the HL-LHC
HH prospect studies for the European Particle Physics Strategy
Update in 2018:

▶ Combination of five HH channels,
many of which were based on the
extrapolation of partial ATLAS
and CMS Run 2 results.

▶ The combined significance was ≳ 4;
▶ The 68% confidence interval for 𝜅𝜆

was [0.52; 1.5].
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HH prospects at the HL-LHC
Updated HH prospect studies (2022):

▶ ATLAS updated their projections in
the 𝑏𝑏𝛾𝛾 + 𝑏𝑏𝜏𝜏 + 𝑏𝑏𝑏𝑏 channels,
based on the extrapolations of full
Run 2 HH search results:

▶ 95% CL limit at 0.55 × the SM
prediction;

▶ Combined significance at 3.4;
▶ 68% confidence interval for 𝜅𝜆

at [0.5; 1.6], comparable to 2018
ATLAS+CMS projections.

▶ See ATL-PHYS-PUB-2022-053.
▶ Projections based on the HH searches

performed prior to the Run-2 legacy
publications.
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HH prospects at the HL-LHC
Updated HH prospect studies (2022):

▶ CMS also updated their projections
based on their three main HH search
channels:

▶ 95% CL limit below 0.8 × the
SM prediction.

▶ Despite experimental challenges at the
HL-LHC, hard work and creativity in
both event reconstruction and analysis
techniques have allowed to improve the
projected sensitivities since 2018.

▶ Imagine what we can do in the
next 20 years!!
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HH prospects beyond the HL-LHC

▶ Direct HH searches:
▶ lead the sensitivity to the

Higgs self-interaction;
▶ but require large

√
𝑠 at 𝑒+𝑒−

colliders;
▶ ZHH above ≃ 500 GeV, also

VBF HH𝜈𝑒 ̄𝜈𝑒 beyond 1 TeV.
▶ Indirect but accurate measurement

of the self-interaction via single-H
production at future 𝑒+𝑒− colliders
once large datasets are available.

The HL-LHC results on the Higgs self-interaction will represent an important
legacy for several decades.
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Summary
▶ Elusive non-resonant pairs of Higgs bosons are the prime experimental

signature of the Higgs self-interaction.
▶ ATLAS has published impressive results with the LHC Run 2 dataset

(and so did CMS):
▶ 𝜎HH above 2.9 times the SM prediction is excluded at 95% CL;
▶ 𝜅𝜆 ∈ [−1.2; +7.2] at 95% CL.

▶ VBF HH searches uniquely allow to probe the VVHH quartic coupling:
the 𝜅2𝑉 = 0 hypothesis has been excluded with a significance above 3𝜎
in ATLAS (and 6.6𝜎 in CMS).

▶ Novel re-interpretations of HH searches in the framework of Effective
Field Theories.

▶ Resonant production of Higgs boson pairs allows to probe several models
with an extended Higgs sector.

▶ LHC physicists are eagerly analysing the LHC Run-3 dataset to further
probe HH events.
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