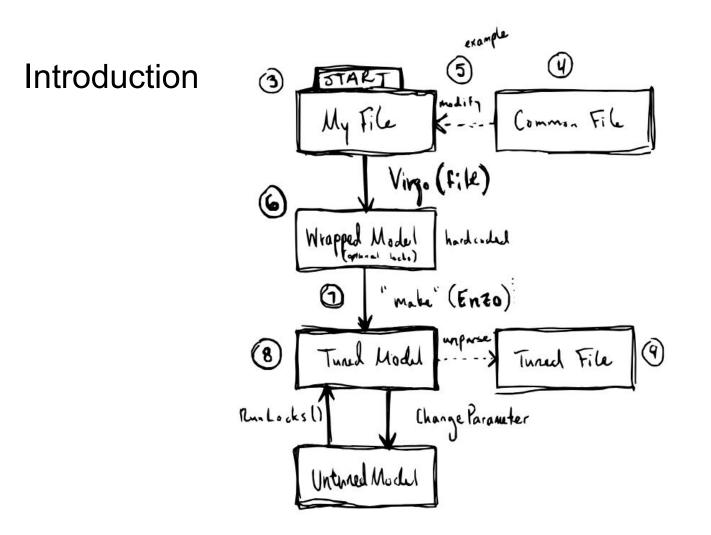
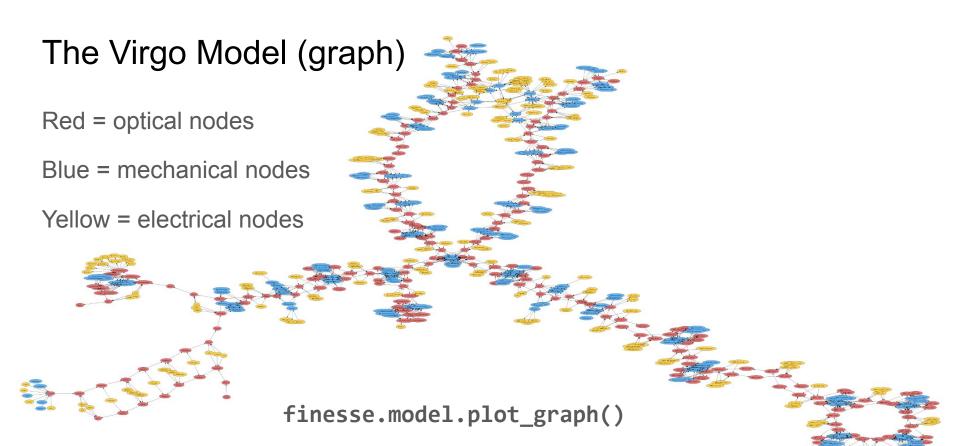
Using the Finesse-Virgo package


Jonathan Perry, On behalf of the Finesse-Nikhef team


Introduction

The `finesse-virgo` package includes top-level tools and models for simulating Virgo in Finesse 3.

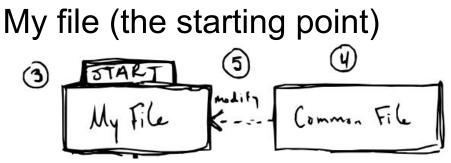
- Common file with current configuration
- Pre-tuning scripts (including locks)
- Diagnostic and informative utility functions

The Optical Graph

model.plot_graph(network_type="optical")

Install / Update

Installation can be done with `pip`:


pip install finesse_virgo

Update to latest version:

pip install -upgrade finesse_virgo

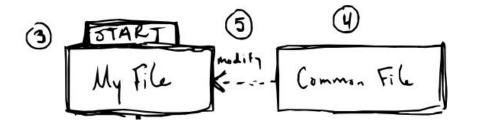
Import via `finesse`:

import finesse.virgo as fv

The starting point of every study is a katfile.

```
fv.Virgo("my_file.kat")
```

```
fv.Virgo("my_file_dir")
```


Not currently good for design tasks due to

rigid constraints on naming conventions.

(optics, DOFs, detectors, etc.) To be relaxed.

```
# An Advanced Virgo Plus input file for Finesse 3
    # modulation frequencies [TDR, tab 2.3, pp 24]
    var f6 6270777 # 6 MHz, fmod1 in TDR
    var f8 4/3*f6 # 8 MHz, 4 / 3 * f6, fmod3 in TDR
    var f56 9*f6
                     # 56 MHz. 9 * f6. fmod2 in TDR
    var nsilica 1.44963
    var Mloss 30u
    var etalonNI 0 # NI etalon tuning
    var etalonWI 0 # WI etalon tuning
    # Laser and modulators
    # EOM parameters from https://logbook.virgo-gw.eu/virgo/?r=34898
    # and https://logbook.virgo-gw.eu/virgo/?r=41551
    laser i1 P=40.0
    s s0 il.pl eom6.pl L=1m
    mod eom6 f=f6 midx=0.22
    s sEOM6 eom6.p2 eom8.p1 L=0.1
    mod eom8 f=f8 midx=0.15
24
    s sEOM8 eom8.p2 eom56.p1 L=0.1
    mod eom56 f=f56 midx=0.25
    # REFL, B2 readout
    s s1 eom56.p2 FI.p1 L=0.2
    dbs FI
    s s2 FI.p3 PRAR.p1 L=0
    # Beam splitter to obtain 18 mW of power on B2 (with 40W input)
    s s3 FI.p4 B2 attenuator.p1 L=0
    bs B2 attenuator R=0.99816 T=0.00184
    # B2 readout is at B2 attenuator.p3
```

The common file

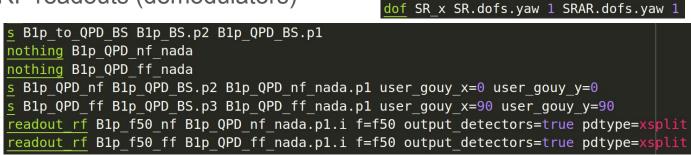
Start with the "common file" if you don't have your own:

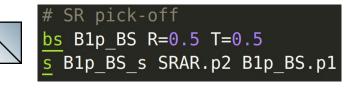
```
fv.copy_input_files("local_dir")
```

```
virgo = fv.Virgo("local_dir")
```

Includes common optical layout file and **additional katscript** for tuning and controls.

DOFs
#######################################
position
dof DARM NE.dofs.z -1 WE.dofs.z +1
dof CARM NE.dofs.z +1 WE.dofs.z +1
dof MICH NI.dofs.z -1 NE.dofs.z -1 WI.dofs.z +1 WE.dofs.z +1
dof PRCL PR.dofs.z +1
dof SRCL SR.dofs.z -1
dof NARM NI.dofs.z +1 NE.dofs.z +1
dof WARM WI.dofs.z +1 WE.dofs.z +1
dof NI_z NI.dofs.z +1
dof NE_z NE.dofs.z +1
dof WI_z WI.dofs.z +1
dof WE_z WE.dofs.z +1
applied force
dof DARM_Fz NE.dofs.F_z -1 WE.dofs.F_z +1
dof CARM_Fz NE.dofs.F_z +1 WE.dofs.F_z +1
dof MICH_Fz NI.dofs.F_z -1 NE.dofs.F_z -1 WI.dofs.F_z +1 WE.dofs.F
dof PRCL_Fz PR.dofs.F_z +1
dof SRCL_Fz_SR.dofs.F_z1
dof NARM Fz NI.dofs.F z +1 NE.dofs.F z +1
dof WARM Fz WI.dofs.F z +1 WE.dofs.F z +1
dof NI Fz NI.dofs.F z +1
dof NE Fz NE.dofs.F z +1
dof WI_Fz WI.dofs.F_z +1
dof WE_Fz WE.dofs.F_z +1


Example: Modifications to common file


Before parsing:

- 1. Additional modulator
- 2. Beamsplitter after SRM

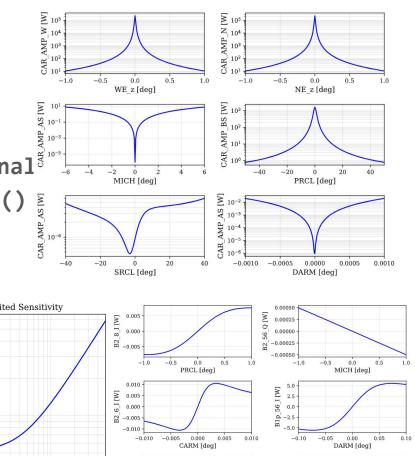
After parsing:

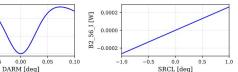
- 1. Define degrees of freedom (for composite mirrors)
- 2. Create QPD RF readouts (demodulators)

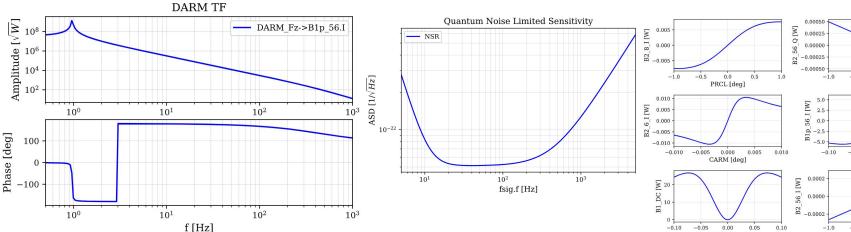
eomX f=1 midx=0

mod

Pre-tuning / "Making" Virgo

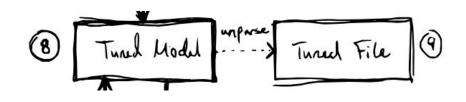

Note: Do not use `make()`, brief overview (in detail with Enzo)


- Defines the "operating point"
- Optimize lengths
- Optimize powers (maximize arms, minimize dark port)
- Optimize demodulation phase
- Optimize lock gains
- Run the locks (zero the error signals)


lock PRCL_lock B2_8_I PRCL.DC -63.80813077245811 5.3e-06 lock MICH_lock B2_56_Q MICH.DC 1995.7759287359338 9.1e-07 lock CARM_lock B2_6_I CARM.DC -0.1614654491019635 1.6e-05 lock DARM_rf_lock B1p_56_I DARM.DC -0.0065708585507211455 0.0017 lock DARM_dc_lock B1_DC DARM.DC -0.0065708585507211455 0.0017 enabled=false offset=4m lock SRCL_lock B2_56_I SRCL.DC -3797.910605193875 2.2e-05 # West

Tuned Model

- Plot powers virgo.plot_powers() _
- Plot error signals virgo.plot_error_signal _
- DARM transfer function virgo.plot_DARM() _
- QNLS virgo.plot QNLS() _



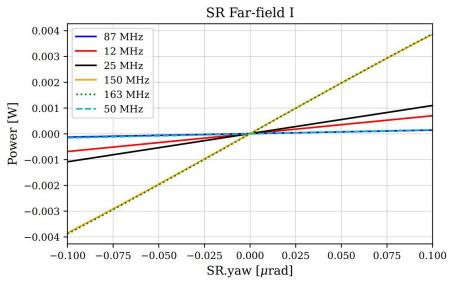
Save tuned model

Save a tuned model for use later using the unparser:

virgo.model.unparse_file("my_tuned_file.kat")

1	±				
	#				
	# An Advanced Virgo Plus input file for Finesse 3				
	<pre># modulation frequencies [TDR, tab 2.3, pp 24]</pre>				
	var f6 6270777 # 6 MHz, fmod1 in TDR				
	var f8 4/3*f6 # 8 MHz, 4 / 3 * f6, fmod3 in TDR				
	var f56 9*f6 # 56 MHz, 9 * f6, fmod2 in TDR				
	var nsilica 1.44963				
	var Mloss 30u				
11					
12	var etalonNI 0 # NI etalon tuning				
13	var etalonWI 0 # WI etalon tuning				
14					
15	# Laser and modulators				
16					
17	<pre># EOM parameters from https://logbook.virgo-gw.eu/virgo/?r=34898</pre>				
18	# and https://logbook.virgo-gw.eu/virgo/?r=38123				
19	<pre># and https://logbook.virgo-gw.eu/virgo/?r=41551</pre>				
20	laser i1 P=40.0				
21	s s0 il.pl eom6.pl L=1m				
22	mod eom6 f=f6 midx=0.22				
23	s sEOM6 eom6.p2 eom8.p1 L=0.1				
24	mod eom8 f=f8 midx=0.15				
25	s sEOM8 eom8.p2 eom56.p1 L=0.1				
26	mod eom56 f=f56 midx=0.25				
27					

Example: Running an Experiment


For each modulation frequency:

- 1. Set modulation frequency
- 2. Add sideband-of-sideband (SoS) frequency
- 3. Set demodulation frequency
- 4. Optimize demodulation phase
- 5. Misalign mirror

var	f50	(eom56.f-f6)	var f131 (21*eom6.f)
var	f31	(5*eom6.f)	var f75 ((21*f6)-eom56.f)
var	f87	(eom56.f+(5*f6))	var f206 (33*eom6.f)
var	f68	(11*eom6.f)	
var	f12	((11*f6)-eom56.f)	var f150 ((33*f6)-eom56.f)
var	f81	(13*eom6.f)	var f219 (35*eom6.f)
var	f25	((13*f6)-eom56.f)	<u>var</u> f163 ((35*f6)-eom56.f)

Summary

The `finesse-virgo` package includes top-level tools and models for simulating Virgo in Finesse 3.

Install with `pip install finesse_virgo`

- 1. Start with your modified katfile (or copy the common file to a local directory)
- 2. Use your modified katfile with the Virgo object
- 3. Pre-tune the model (check the figures of merit)
- 4. Save a tuned version (with locks)
- 5. Run the experiment while maintaining operating point.