
Using the Finesse-Virgo package
Jonathan Perry, On behalf of the Finesse-Nikhef team



Introduction

The `finesse-virgo` package includes 
top-level tools and models for simulating 
Virgo in Finesse 3.

- Common file with current configuration
- Pre-tuning scripts (including locks)
- Diagnostic and informative utility 

functions



Introduction



The Virgo Model (graph)

Red = optical nodes

Blue = mechanical nodes

Yellow = electrical nodes

finesse.model.plot_graph()



The Optical Graph

model.plot_graph(network_type=”optical”)



Install / Update

Installation can be done with `pip`:

pip install finesse_virgo

Update to latest version:

pip install –upgrade finesse_virgo

Import via `finesse`:

import finesse.virgo as fv



My file (the starting point)

The starting point of every study is a katfile.

fv.Virgo(“my_file.kat”)

fv.Virgo(“my_file_dir”)

Not currently good for design tasks due to

rigid constraints on naming conventions.

(optics, DOFs, detectors, etc.) To be relaxed.



The common file

Start with the “common file” if you don’t have your 
own:

fv.copy_input_files(“local_dir”)

virgo = fv.Virgo(“local_dir”)

Includes common optical layout file and 
additional katscript for tuning and controls.



Example: Modifications to common file

Before parsing:

1. Additional modulator
2. Beamsplitter after SRM

After parsing:

1. Define degrees of freedom (for composite mirrors)
2. Create QPD RF readouts (demodulators)

=



Pre-tuning / “Making” Virgo

Note: Do not use `make()`, brief overview (in detail with Enzo)

- Defines the “operating point”
- Optimize lengths
- Optimize powers (maximize arms, minimize dark port)
- Optimize demodulation phase
- Optimize lock gains
- Run the locks (zero the error signals)



Tuned Model

- Plot powers virgo.plot_powers()
- Plot error signals virgo.plot_error_signals()
- DARM transfer function virgo.plot_DARM()
- QNLS virgo.plot_QNLS()



Save tuned model

Save a tuned model for use later using the unparser:

virgo.model.unparse_file(“my_tuned_file.kat”)



Example: Running an Experiment

For each modulation frequency:

1. Set modulation frequency
2. Add sideband-of-sideband (SoS) frequency
3. Set demodulation frequency
4. Optimize demodulation phase
5. Misalign mirror



Summary

The `finesse-virgo` package includes top-level tools and models for simulating 
Virgo in Finesse 3.

Install with `pip install finesse_virgo`

1. Start with your modified katfile (or copy the common file to a local directory)
2. Use your modified katfile with the Virgo object
3. Pre-tune the model (check the figures of merit)
4. Save a tuned version (with locks)
5. Run the experiment while maintaining operating point.


