Nikhef Strategy Day Pitch:

BSM Searches with Future Colliders

Robin Hayes Nikhef Strategy Day Oct 15, 2024

Complete Theory

• Lots of possible paths toward a new theory.

- Lots of possible paths toward a new theory.
- Very straightforward: discover new particle X!

- Lots of possible paths toward a new theory.
- Very straightforward: discover new particle X!
- This talk: prospects for BSM searches at future colliders.

High-energy $\mu^+\mu^-$ or pp collider

- Probe direct production of new particles for masses up to 10s of TeV
 - SUSY, extended Higgs sectors, sterile neutrinos, and more....

Low-energy e^+e^- Higgs factory

• Probe direct production of new particles for sufficiently low masses.

• Fill in some gaps:

- Low-xsec processes with sizeable hadronic BRs
- Models presenting reconstruction/identification difficulties.
- Indirect constraints via precision measurements and EFT.

Next slides: some concrete examples.

New Vector Bosons

Composite Higgs

High-energy (eg. FCC-hh): direct searches can exclude m up to 40 TeV for low values of g^*

 Further info on fine-tuning from mass of top partner: limits of 1.5 TeV (HL-LHC) → 4.7 TeV (FCC-hh).

Low-energy e^+e^- : indirect constraints (EFT) stronger than HL-LHC.

SUSY

Gluinos

High-energy (eg. FCC-hh): exclusion limits reach 7.5-17 TeV (1.5-3.2 TeV for HL-LHC)

Low-energy e^+e^- : Not possible

EWKinos

Low-energy e^+e^- : at low masses, provide strongest limits for small mass splitting (low MET) – reach 1.5 TeV.

Nikhef Strategy Day

- Energy-frontier machines bring predictably better constraints and opportunity for direct study.
- Low-energy options provide good complementarity and a reach that still extends the HL-LHC's.
- Complete programme (eventually) could include both.

