Fast and compact proton radiography imaging system for proton radiotherapy

Aleksandra K. Biegun

ATTRACT NL Kick-off event, 9th February 2017, Amsterdam, The Netherlands

university of groningen

kvi - center for advanced radiation technology

Proton therapy work flow

ATTRACT NL Kick-off event, Amsterdam 9 February 2017

Aleksandra K. Biegun

Fast and compact proton radiography imaging system for proton radiotherapy 2

Knowledge of the patient and its consequence

CT scan 1.10 **Schneider** Fit to organs and muscle Fit to bone Schneider et al, PMB 41 (1996) 11 approach 1.05-Fit to adipose Calibration curve Powe 1.00 **Relative Stopping** 0.95 0.90 Organs and muscle Adipose Breast $HU = 1000 \frac{\mu - \mu_{water}}{1000}$ 0.85 Bone marrow Cartilage μ_{water} 0.80 850 1000 1050 1100 1150 800 900 950 Scaled Hounsfield Units Conversion HU to proton stopping dE**3D map of proton** power is NOT unique stopping powers Systematic uncertainties of 3-4% or more Increased dose require larger than neccessary to healthy tissues irradiation safety margins around the tumor

ATTRACT NL Kick-off event, Amsterdam 9 February 2017

university of groningen kvi - center for advanced radiation technology

Why proton radiography?

- Direct measurement of proton stopping powers (model free)
- High resolving power for proton beam (centerpiece of the pen visible)
- X-ray produces a clearer image of the spring, but density resolution for the centerpiece is not high

ATTRACT NL Kick-off event, Amsterdam 9 February 2017

Aleksandra K. Biegun

Fast and compact proton radiography imaging system for proton radiotherapy 4

Current systems with tracking detectors

G

university of groningen

kvi - center for advanced radiation technology

 Trend towards Si tracking detectors (individual proton)

Fast, BUT with high Z, high ρ more Multiple Coulomb Scattering \rightarrow more blurred image

 Different approaches for energy/range detectors

Too slow / too thin

Count rate close to required
 Size / configuration not yet optimal

ATTRACT NL Kick-off event, Amsterdam 9 February 2017

. Poludniowski et al., Br J Radiol (2015) 88 :20150134					
Group	Year	Tracking detector (# of units)	Residual Energy-Range Detector	Rate (Hz)	Imaging device
PSI	2005	x-y Sci-Fi (4)	Plastic scintillator telescope	1 M	pRad
LLU/ JCSC/NIU	2013	x-y SiSDs (4)	CsI (TI)	15 k	pCT
LLU/ UCSC/ CSUSB	2014	x-y SiSDs (4)	Plastic scintillator hybrid telescope	2 M	pCT
AQUA	2013	x-y GEMs (2)	Plastic scintillator telescope	1 M	pRad
PRIMA I	2014	x-y SiSDs (4)	YAG:Ce calorimeter	10 k	pCT
PRIMA II	2014	x-y SiSDs (4)	YAG:Ce calorimeter	1 M	pCT
INFN	2014	x-y Sci-Fi (4)	x-y Sci-Fi	1 M	pCT
NIU/FNAL	2014	x-y Sci-Fi (4)	Plastic scintillator telescope	2 M	pCT
Niigata Jniversity	2014	x-y SiDs (4)	NaI (TI) calorimeter	5 k	pCT
PRaVDA	2015	X-u-v SiSDs	CMOS APS	1 M	pCT

telescope

Ideal system with tracking detectors

✓ Tracking detectors

- Low Z and WET → minimum MCS in detector
 - **Fast** \rightarrow high count rate (> MHz),

time resolution ~ns

- Spatial resolution → 50 µm
- Full proton track determination
- Modular and compact \rightarrow 30x30 cm²

✓ Residual energy detector

- Good energy resolution of up to 1% (YAG:Ce, LaBr₃)
- Fast → high count rate (> MHz)

ATTRACT NL Kick-off event, Amsterdam 9 February 2017

Ideal system with tracking detectors

radiation technology

 Easy to mount on a gantry in proton therapy centers

Scan time + reconstruction
 of up to few sec

All to be clinically acceptable!

✓ Tracking detectors

- Low Z and WET → minimum MCS in detector
 - Fast → high count rate (> MHz),
 time resolution ~ns
- Spatial resolution → 50 µm
- Full proton track determination
- Modular and compact \rightarrow 30x30 cm²
 - ✓ Residual energy detector
- Good energy resolution of up to 1% (YAG:Ce, LaBr₃)
- **Fast** \rightarrow high count rate (> MHz)

ATTRACT NL Kick-off event, Amsterdam 9 February 2017

Fast and compact proton radiography imaging system for proton radiotherapy 7

Energy loss radiographs: $\Delta E = E_{beam} - E_{residual}$ (Geant4) hiversity of groningen kvi - center for advanced radiation technology \diamond All protons that passed through Protons with maximum phantom and three detectors scattering angle $\theta < 5.2$ mrad ΔE (MeV) ΔE (MeV) 5 50 5 50 4 45 4 45 3 3 40 40 2 35 35 30 (cm) CU 30 25 25 20 20 -2 -2 15 -3 -3 10 15 -4 -4 5 10

Selecting protons traveling along straight lines improves the image quality

-5<u>}</u>

-2

_1

A.K. Biegun et al., JINST **11** C12015 (2016) an

X (cm)

-5<u>-</u>3

-2

andra K. Biegun

3

2

Fast and compact proton radiography imaging system for proton radiotherapy 8

X (cm)

3

2

Proton radiography @KVI–CART (Exp'2015)

Collaboration with J. Visser, M. van Beuzekom, E. Koffeman

Improved part of detection system:

Position: TPC based on Timepix3 - factor 100 faster data acquisition compared to GridPix used in experiment (May'14) \rightarrow 100x more data Energy: BaF₂ scintillator

Count rate ~20 kHz increased by factor 100!!

... but still not high enough for clinical requirement...

ATTRACT NL Kick-off event, Amsterdam 9 February 2017

Fast and

kvi - center for advanced radiation technology

Energy loss reconstruction: Sims vs. Exp'2015

radiation technology \Rightarrow Phantom partially covered by Timepix3-based TPCs (3.0 x 3.0 cm²) ΔE (arb. unit) $\diamond \theta < 5.2 \text{ mrad}$ ΔE (MeV) Preliminary Z (mm) 2016) 30 50 5 45 4 Koffeman (Nikhef, June Master thesis: M. Dietze with J 25 3 40 100 2 35 20 30 √ (cm) 90 **PMMA** 25 15 MMA 20 80 ш -2 15 10 M. van Beuzekom, -3 10 5 -4 60 -5<u>}</u> cung -2 0 -1 X (cm) 15 20 5 10 Fat/Air/CTsw X (mm)

Simulations and experimental results are comparable

ATTRACT NL Kick-off event, Amsterdam 9 February 2017

Aleksandra K. Biegun

Fast and compact proton radiography imaging system for proton radiotherapy 10

university of groningen kvi - center for advanced

kvi - center for advanced radiation technology

- Fast and compact detection system
- Good spatial, angular and energy resolutions
 - Compatible with reconstruction algorithms

An accurate proton stopping power map of the patient
 → Accurate treatment plan
 → Full benefit from proton radiotherapy

ATTRACT NL Kick-off event, Amsterdam 9 February 2017