Characterization of the VeloPix Detector Gain Response to Fe-55 Irradiation

Student: Alfonso Puicercus

Supervisor: Kristof De Bruyn

university of
groningen

Introduction

Large Hadron Collider (LHC):

is the largest particle accelerator in the world

Various experiments, but among them LHCb

Improvement of measurements ⇒ Upgrade

Vertex Locator (VELO) detector upgraded!

Vertex Locator (VELO)

- First sub-detector particles encounter
- Measures the ionising particles paths
- 52 Modules along travelling direction
- Surrounds *pp* interaction region

Vertex Locator (VELO)

One module = 4 sensors with 3 VeloPix ASICs each

Application-Specific Integrated Circuits (ASICs) Digital to Analog Converter (DAC) 4

ASIC

256x256 pixels/ASIC

200 µm n-on-p Silicon depletion zone

Detection Process:

- Creation of electron-hole pairs (ehp)
- Collect current
- Digital signal [DAC]

Application-Specific Integrated Circuits (ASICs) Digital to Analog Converter (DAC) 55

ASIC Pixel Schematic with incident ionising particle

Signals, Noise and Thresholds

Threshold [DAC] : minimum signal amplitude required for a pixel to register a hit. [DAC] = Unit used by ASICs. Associates a Digital value to an Analog voltage or current.

Digital to Analog Converter (DAC)

https://fse.studenttheses.ub.rug.nl/24770/1/bPHYS_2021_VosM.pdf

Overview

Calibration and project goal:

Conversion factor or Gain, K [e-/DAC]

Controlled scenario with radiation source \Rightarrow *K* [e-/DAC] for ASIC

Compare to VeloPix ASIC design paper estimate

 K_{est} [e-/DAC] = 15.45 ± 0.51

Application-Specific Integrated Circuits (ASICs) Digital to Analog Converter (DAC)

Overview

Calibration goal:

Conversion factor or Gain, K [e-/DAC]

Controlled scenario with radiation source \Rightarrow *K* [e-/DAC] for ASIC

 K_{est} [e-/DAC] = 15.45 ± 0.51

Compare to VeloPix ASIC design paper estimate

Other goals:

Explore individual vs ASIC behaviour

Explore possible biases

Application-Specific Integrated Circuits (ASICs) Digital to Analog Converter (DAC)

Theory: Signals, Noise and Thresholds

Pixel-to-pixel variations exist \Rightarrow can be fixed with small configuration setting in pixels

⇒ Trim setting: Acts as current offset added to input signal

 $10¹$

1150 1200 1250 1300

1350 1400 1450 1500

DAC Threshold

1550

1600 1650 1700

- 2. Global threshold and noise baseline for ASIC
- 3. Masked pixel matrix

Masked: 101

Theory: Signals, Noise and Thresholds

Fe55 source:

- 60% Auger e- with energy 5.19 keV, not measured
- 28% X-rays with energy 5.9 keV
- 12% other not relevant processes

Only X-ray flux detected on ASIC

 $E_\gamma = 5.9 \mathrm{keV}$

Theory: Signals, Noise and Thresholds

Flux vs Threshold scan

Theory: Source and Detection

Processes:

1. Photoelectric effect, $E_{\rm g} = 1.12 \rm eV$

$$
E=E_{\gamma}-E_{\rm g}\,\overline{\Rightarrow}\,E\approx E_{\gamma}
$$

2. Average electron-hole pair-creation energy in Si: $E_{ehp} = 3.69 \pm 0.11 \text{ eV}/\text{ehp}$ $\Rightarrow n_{ehp} = \frac{E_{\gamma}}{E_{ehp}} = \frac{5900 \text{ eV}}{3.69 \text{ eV}/\text{ehp}} = 1598.92 \text{ ehp}$ Routing laver **Flectric field Energy deposition**

$$
\rightarrow \ target = E_0 - E_b~~,~n_{ehp}
$$

$$
\boxed{K\bigg[\frac{e^-}{DAC}\bigg]=\frac{n_{e^-}}{target}=\frac{E_\gamma}{E_{ehp}}\frac{1}{(E_0-E_b)}}
$$

Flux model structure

Flux model structure

Other possibilities:

$$
F_{1,0}(E) = Af \cdot \frac{1}{2} \left(\frac{s}{\sqrt{\pi}} e^{-\left(\frac{E-E0}{s}\right)^2} + (E0 - E) \cdot \text{erfc}\left(\frac{E - E0}{s}\right) \right) + A(1 - f) \cdot \frac{1}{s\sqrt{8\pi}} \cdot \text{erfc}\left(\frac{E - E0}{s\sqrt{2}}\right)
$$

\n
$$
F_1(E) = Af \cdot \frac{1}{2} (E0 - E) \cdot \text{erfc}\left(\frac{E - E0}{s}\right) + A(1 - f) \cdot \frac{1}{s\sqrt{8\pi}} \cdot \text{erfc}\left(\frac{E - E0}{s\sqrt{2}}\right)
$$

\nUsing a different parametrization: AB model $A^* = \frac{1}{2} fA$, $B^* = \frac{1}{2} (1 - f)A$
\nModel name, with term0
\n
$$
F_{AB,0}(E) = A^* \cdot \left(\frac{s}{\sqrt{\pi}} e^{-\left(\frac{E - E0}{s}\right)^2} + (E0 - E) \cdot \text{erfc}\left(\frac{E - E0}{s}\right)\right) + B^* \cdot \frac{1}{s\sqrt{2\pi}} \cdot \text{erfc}\left(\frac{E - E0}{s\sqrt{2}}\right)
$$

\n
$$
F_{AB}(E) = A^* \cdot (E0 - E) \cdot \text{erfc}\left(\frac{E - E0}{s}\right) + B^* \cdot \frac{1}{s\sqrt{2\pi}} \cdot \text{erfc}\left(\frac{E - E0}{s\sqrt{2}}\right)
$$

$$
\text{ercc}\left(\frac{\overline{a}}{s}\right) + D \cdot \frac{\overline{b}}{s\sqrt{2\pi}} \cdot \text{ercc}\left(\frac{\overline{b}}{s\sqrt{2}}\right)
$$

Other possibilities:

$$
F_{1,0}(E) = Af \cdot \frac{1}{2} \left(\frac{s}{\sqrt{\pi}} e^{-\left(\frac{E-E0}{s}\right)^2} + (E0 - E) \cdot \text{erfc}\left(\frac{E - E0}{s}\right) \right) + A(1 - f) \cdot \frac{1}{s\sqrt{8\pi}} \cdot \text{erfc}\left(\frac{E - E0}{s\sqrt{2}}\right)
$$

$$
F_1(E) = Af \cdot \frac{1}{2} (E0 - E) \cdot \text{erfc}\left(\frac{E - E0}{s}\right) + A(1 - f) \cdot \frac{1}{s\sqrt{8\pi}} \cdot \text{erfc}\left(\frac{E - E0}{s\sqrt{2}}\right)
$$
Notation

Using various *s* parameters: 2s model Model Number 2nd Model name, with term0

$$
\begin{array}{l} F_{2s,0}(E)=Af\cdot \frac{1}{2}\bigg(\frac{s_1}{\sqrt{\pi}}e^{-\big(\frac{E-E0}{s_1}\big)^2}+(E0-E)\cdot \text{erfc}\Big(\frac{E-E0}{s_1}\Big)\bigg)+A(1-f)\cdot \frac{1}{s_2\sqrt{8\pi}}\cdot \text{erfc}\Big(\frac{E-E0}{s_2\sqrt{2}}\Big)\\ F_{2s}(E)=\frac{1}{2}fA\cdot (E0-E)\, \text{erfc}\Big(\frac{E-E0}{s_1}\Big)+\frac{1}{2}(1-f)A\cdot \frac{1}{s_2\sqrt{2\pi}}\cdot \text{erfc}\Big(\frac{E-E0}{s_2\sqrt{2}}\Big)\\ F_{2s,AB}(E)=A^*\cdot (E0-E)\cdot \text{erfc}\Big(\frac{E-E0}{s_1}\Big)+B^*\cdot \frac{1}{s_2\sqrt{2\pi}}\cdot \text{erfc}\Big(\frac{E-E0}{s_2\sqrt{2}}\Big) \end{array}
$$

Setup:

- Module at Nikhef for testing
- Cooling system used for data taking

Some data specifics:

- Two module temperatures, with same distance
- "Module production" equalisation
- MiniDAQ2 (data acquisition equipment)

Filtering:

Anomalies are removed.

Acquisitions that are empty or considered bad

Fitting and Pixel Categorisation:

Good: fit found and $\chi^2 < \chi^2_c$

Bad: fit found but $\chi^2 > \chi_c^2$ or unphysical parameters

Fit not found: not converging

Cut data: no enough data, faulty or masked **Cold** Cold 198

$$
\chi^2 = \sum_i \left(\frac{O_i - F_i}{U_i} \right)^2,
$$

$$
\chi^2_c \text{ with } \alpha = 0.05 \text{ and } \text{dof} = n-4
$$

Average behaviour of pixels:

- **● Mean**
- **● ASIC**
	- *○ Represents the average flux on the whole ASIC.*
	- *○ Takes into account bad fit pixels → not an accurate representation?*
- **● ASICgood**
	- *○ Uses only good fit pixels → probably less biased*

Throughout analysis looking at:

Distributions + Mean, ASIC & ASICgood

Can we say anything about the individual pixels from looking at the ASIC flux?

Analysis

Fit the data to the Flux equation allows us to:

$$
F(E) = Af \cdot \frac{1}{2} \left(\frac{s}{\sqrt{\pi}} e^{-\left(\frac{E-E0}{s}\right)^2} + (E0 - E) \cdot \text{erfc}\left(\frac{E - E0}{s}\right) \right) + A(1 - f) \cdot \frac{1}{s\sqrt{8\pi}} \cdot \text{erfc}\left(\frac{E - E0}{s\sqrt{2}}\right)
$$
\n\n• Categorise pixels

\n• Obtain physical parameters: E0

\n• Target and gain K[e-/DAC]

\n• ASIC / average

\n• ASLC / average

\n

Individual vs Average/ASIC

Figure 9: Average and individual pixel 127 x 128 flux comparison for both the cold and warm dataset. The pink data points and line correspond to the individual pixel and the green data points and line to the average/ASIC flux.

Individual vs Average/ASIC

ST=2s621ms from resultscalibration cold

ST=2s621ms from resultscalibration warm

Individual vs Average/ASIC

Best flux model used here: $F_{1,0}$

$$
p_{thr} = \frac{r_{thr}}{\Delta F_{\rm raw\;,thr}} = \frac{F_{\rm raw\;,thr} - F_{\rm fit\;,thr}}{\Delta F_{\rm raw\;,thr}}
$$

Individual vs Average/ASIC

Best flux model used here: $F_{1,0}$

$$
p_{thr} = \frac{r_{thr}}{\Delta F_{\rm raw\;,thr}} = \frac{F_{\rm raw\;,thr} - F_{\rm fit\;,thr}}{\Delta F_{\rm raw\;,thr}}
$$

Individual vs Average/ASIC

Fits are still acceptable

Pixels:

*ASIC***:**

Pixel Categorisation

Figure 13: Heatmaps showing fit type category given to the individual pixels for the cold and warm dataset.

Pixel Categorisation

Figure 13: Heatmaps showing fit type category given to the individual pixels for the cold and warm dataset.

Testing other flux models

Testing other flux models

Testing other flux models

Analysis: Parameters

Parameter distributions (good pixels only)

Sharpness of flux drop

Analysis: Parameters

Parameter distributions (good pixels only)

Difference between individual vs ASIC \Rightarrow Is ASIC value a good choice?

Analysis: Target

We know that:

All pixels should agree on the energy deposition Shift in E_0 due to pixel variations

We can use $target = E_0 - E_b$ to:

Correct for pixel-to-pixel variations

Obtain energy deposition

Analysis: Target

Calculation of $target = E_0 - E_b$ \rightarrow need E_b

Individual pixel values

• E_b using the best prediction from equalisation

ASIC and ASICgood

•
$$
E_{bASIC} = \overline{E_b}
$$
, target_{ASIC} = $E_{0ASIC} - E_{bASIC}$

Analysis: Target and e-/DAC

Analysis: Gain K [e-/DAC]

Mean gain and uncertainty $SEM = \sigma/\sqrt{n}$

Exposure time influence

Warm dataset has twice as much exposure time

New dataset variations with equal exposure time on both *warm* and *cold*:

calibration_nacq50: using acquisitions in the [0,50] range.

calibration $acq0$ to25: acqs in $[0,25]$ range

calibration_acq25to50: acqs in [25,50] range

Exposure time influence

Exposure time influence

Exposure time influence

Assign a systematic uncertainty to the gain K[e-/DAC]

Exposure time influence

Assign a systematic uncertainty to the gain K[e-/DAC]

ASIC Gain makes a *good* prediction of Mean Gain

Pixel coordinate bias

No correlation of pixel coordinate and value of E0

Pixel coordinate bias

Pattern observed in equalisation

Groups: *even* and *odd* columns + 16ths rows

Based on equalisation approach:

1. Same 3 groups

Pixel coordinate bias

Pixel coordinate bias

Disagreement on mean gain among groups. Bias coming from pixel position.

K [e-/DAC] obtained for two datasets with Fe55 irradiation:

Mean Gain found is still somewhat *compatible* with Paper Estimate

K [e-/DAC] obtained for two datasets with Fe55 irradiation:

Maybe lower temperatures ⇒ Mean gain from data approaches Estimate Gain?

Summary:

● Method to obtain Gain from irradiation of ASICs

● ASIC flux is not bad predictor for Mean Gain

Positional bias observed

Future:

● Repeat analysis with new data and new equalisation running on MiniDAQ3

Better determination of sys. uncertainty

Repeat on other ASICs and temperatures

Thank you for your attention.

Questions or suggestions?

Extra slides

Vertex Locator (VELO)

Table 1. Specifications of the upgraded VELO compared to those of the original version.

Vertex Locator (VELO)

Vertex Locator (VELO)

Flux over thr

Flux vs Thr [DAC]

E0 Analysis

Heatmap of E0

Analysis: Target

Calculation of $target = E_0 - E_b \rightarrow$ need E_b

Individual pixel values

• E_b using the best prediction from equalisation

 $\bullet \Delta E_b$ noise width of either Trim0 or TrimF

ASIC

$$
target_{ASIC} = E_{0ASIC} - mean(E_b) \\ \Delta targetASIC = \sqrt{{(\Delta E0_{ASIC})}^2 + {(\overline{\Delta E_{bASIC}})}^2}
$$

ASICgood (same as ASIC)

Separation: even, odd, 16th rows

Means

Separation: even, odd, 16th rows

ASIC

Separation: even, odd, 16th rows

ASICgood

Baseline inclusion approaches

_newbaseline: shift in generation of flux files.

Double s parameter in Flux equation

$$
F(E) = Af \cdot \frac{1}{2} \left(\frac{\sqrt{5}}{\sqrt{5}} \right)^2 + (E0 - E) \cdot \text{erfc} \left(\frac{E - E0}{s} \right) \right)
$$

$$
+ A(1 - f) \cdot \frac{1}{s_2 \sqrt{8\pi}} \cdot \text{erfc} \left(\frac{E - E0}{s_2 \sqrt{2}} \right)
$$

 $KASIC = n_ehp/targetASIC$ $uKASIC = KASIC * np.sqrt((n_ehp_error/n_ehp) **2 + (utargetASIC/targetASIC) **2)$

KASICgood =n_ehp/targetASICgood uKASICgood = KASICgood*np.sqrt((n_ehp_err/n_ehp)**2 + (utargetASICgood/targetASICgood)**2)

Shifting E0 by baseline before or after fit should lead to the same target result.

Calibration: shift after fitting. Get E0, then \rightarrow

 $target = E_0 - E_b$ $target_{ASIC} = E_{0ASIC} - mean(E_b)$

baselinewhilefit: shift while fitting. Get *target* directly from fit, also for ASIC

 $\triangle targetASIC = \sqrt{\triangle F}$

$$
\overbrace{target_size}^{target_size} = E_{0ASIC} - \overbrace{mean(E_1)}^{mean(E_2)} \\ \Delta t_{a} \overbrace{green{succ}}^{mean(E_3)} = \sqrt{(\Delta E_{0ASIC})^2 + (\Delta E_{bASIC})^2}
$$

_newbaseline: shift in generation flux files

hitsASIC directly shifted with baseline_ASIC

baselinewhilefit: shift while fitting. Get *target* directly from fit, also for ASIC

How Gaussian is the data?

Conclusions

K [e-/DAC] obtained for two datasets of Fe55:

Comparing (cold) ASIC and ASICgood to :

Comparing cold dataset to KASIC ... **Mean Gain** Distance in standard deviations from KASIC: -0.51 Comparing cold dataset to KASICgood ... Distance in standard deviations from KASICgood: 0.12

Estimate Gain Comparing cold to KASIC ... Distance in standard deviations from KASIC: -1.97 Comparing cold to KASICgood ... Distance in standard deviations from KASICgood: -1.54