

university of groningen

Quantification of backgrounds in the high-q² region of R_A

Sander Bouma MSc Thesis Presentation 03-07-2024

Outline

- Standard Model of Particle Physics
- Lepton Flavour Universality
- ➤ The R(Λ) analysis
- > Backgrounds in $R(\Lambda)$
- ➤ Results
- > Outlook

Six different flavours of quarks

Six different flavours of leptons

Four gauge bosons that carry the forces

One scalar boson that allows W and Z to have mass

The SM has made many accurate predictions

Physics Letters B Volume 716, Issue 1, 17 September 2012, Pages 1-29

Physics Letters B Volume 716, Issue 1, 17 September 2012, Pages 30-61

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC \$\frac{1}{2}\$

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance

their contributions to the experiment.

<u>ATLAS Collaboration</u>^{*}, <u>G. Aad</u>⁴⁸, <u>T. Abajyan</u>²¹, <u>B. Abbott</u>¹¹¹, <u>J. Abdallah</u>¹², <u>S. Abdel Khalek</u>¹¹⁵, <u>A.A. Abdelalim</u>⁴⁹, <u>O. Abdinov</u>¹¹, <u>R. Aben</u>¹⁰⁵, <u>B. Abi</u>¹¹², <u>M. Abolins</u>⁸⁸, <u>O.S. AbouZeid</u>¹⁵⁸, <u>H. Abramowicz</u>¹⁵³, <u>H. Abreu</u>¹³⁶, <u>B.S. Acharya</u>^{164a 164b}, <u>L. Adamczyk</u>³⁸, <u>D.L. Adams</u>²⁵, <u>T.N. Addy</u>⁵⁶ J. <u>Adelman</u>¹⁷⁶, <u>S. Adomeit</u>⁹⁸...<u>L. Zwalinski</u>³⁰

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC 🖈

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In

recognition of their many contributions to the achievement of this observation.

<u>CMS Collaboration</u> *, <u>S. Chatrchyan</u>, <u>V. Khachatryan</u>, <u>A.M. Sirunyan</u>, <u>A. Tumasyan</u>, <u>W. Adam</u>, <u>E. Aguilo</u>, <u>T. Bergauer</u>, <u>M. Dragicevic</u>, <u>J. Erö</u>, <u>C. Fabjan</u>¹, <u>M. Friedl</u>, <u>R. Frühwirth</u>¹, <u>V.M. Ghete</u>, J. Hammer, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer...D. Wenman

The SM has made many accurate predictions

Physics Letters B Volume 716, Issue 1, 17 September 2012, Pages 1-29

Physics Letters B Volume 716, Issue 1, 17 September 2012, Pages 30-61

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC \$\frac{1}{2}\$

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC 🖈

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In

The SM has made many accurate predictions

ELSEV		Measurement of the Electron Magnetic Moment	
Cobs for the their cor ATLAS A.A. Ab	erva the S ATLA Milest Obs	X. Fan (Harvard U., Phys. Dept. and Northwestern U. (main)), T.G. Myers (Northwestern U. (main)), B.A.D. Sukra (Northwestern U. (main)), Sep 26, 2022 6 pages Published in: <i>Phys.Rev.Lett.</i> 130 (2023) 7, 071801 Published: Feb 13, 2023 e-Print: 2209.13084 [physics.atom-ph] DOI: 10.1103/PhysRevLett.130.071801 (publication) PDG: $\mu_e/\mu_B - 1 = (mathit g-2)/2$	ass of 125 he LHC 🛠
J. Adeli	F. Abe Phys. F An article	Image: Service Image: pdf Image: cite Image: cite<	re 4

However, there remain unsolved mysteries

Particle dark matter: Evidence, candidates and constraints							
Gianfranco Bertone (Fermilab), Dan Hooper (Oxford U.), Joseph Silk (Oxford U.) Apr, 2004							
141 pages Published in: Phys Rept 405 (2005) 279-390							
e-Print: hep-ph/0404175 [hep-ph]							
DOI: 10.1016/j.physrep.2004.08.031 Report number: FERMILAB-PUB-04-047-A							
View in: ADS Abstract Service							
🗈 pdf 🔗 links 🖃 cite 📑 claim	R reference search						

However, there remain unsolved mysteries

Hint for new physics?

Differential branching fractions and isospin asymmetries of $B \to K^{(*)} \mu^+ \mu^-$ (2014) decays

ntegrate	d branching fractior	is $\times 10^{-8}$	$\times 10^{-8}$
	Decay mode	Measurement	Prediction
	$B^+\!\to K^+\mu^+\mu^-$	$8.5\pm0.3\pm0.4$	10.7 ± 1.2
	$B^0 \rightarrow K^0 \mu^+ \mu^-$	$6.7\pm1.1\pm0.4$	9.8 ± 1.0
	$B^+\!\to K^{*+}\mu^+\mu^-$	$15.8 \ ^{+3.2}_{-2.9} \pm 1.1$	26.8 ± 3.6

Lepton Flavour Universality

Lepton Flavour Universality

According to SM

Muons: Electrons: g_W v_μ g_W v_e μ w $e^{-\frac{1}{W}}$ w

Same interactions, same coupling[†]

[†]also applies to taus

Lepton Flavour Universality

According to SM

Muons: Electrons: g_W v_μ g_W v_e g_W e g_W v_e

Same interactions, same coupling[†]

Thus,* $R = \frac{\mathcal{B}(b \to s\mu^+\mu^-)}{\mathcal{B}(b \to se^+e^-)} \approx 1$

[†]also applies to taus

$b \rightarrow sl^{+}l^{-}$ transitions

Standard Model:

$b \rightarrow sl^{+}l^{-}$ transitions

Standard Model:

Beyond Standard Model: bsZ ℓ^+ Andrzej J. Buras & Jennifer Girrbach. "Left-handed Z' and Z FCNC quark couplings facing new b \rightarrow sµ+µ- data" bLQ Damir Becirevic et al. "Leptoquark model to explain the 9 B-physics anomalies RK and RD "

R measurements

$$R = \frac{\mathcal{B}(b \to s\mu^+\mu^-)}{\mathcal{B}(b \to se^+e^-)} \approx 1$$

http://www.scholarpedia.org/article/Lepton_flavour_universality

http://www.scholarpedia.org/article/Lepton_flavour_universality

The $R(\Lambda)$ analysis

The R(\Lambda) analysis 14.3 GeV²/ $c^4 < q^2 < 20.0 \text{ GeV}^2/c^4$

$$R(\Lambda) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 e^+ e^-)}, \quad \text{where } \Lambda^0 \to p\pi^-$$

- ➤ Baryonic b→sl⁺l⁻ transition
- ► First measurement of $BF(\Lambda_{h} \rightarrow \Lambda^{0}e^{+}e^{-})$
- ➢ New, unexplored q² region

Branching fraction vs q² of $\Lambda_{b} \rightarrow \Lambda^{0} \mu^{\dagger} \mu^{-}$

Branching fraction vs q² of $\Lambda_{b} \rightarrow \Lambda^{0} \mu^{+} \mu^{-}$

Branching fraction vs q² of $\Lambda_{b} \rightarrow \Lambda^{0} \mu^{\dagger} \mu^{-}$

Branching fraction vs q² of $\Lambda_{b} \rightarrow \Lambda^{0} \mu^{+} \mu^{-}$

About resonances (*cc*)

 $\begin{array}{l} \Lambda_b^0 \to \Lambda^0 J/\psi \\ \Lambda_b^0 \to \Lambda^0 \psi(2S) \end{array}$

About resonances (*cc*)

$$\begin{array}{ccc} \Lambda^0_b \to \Lambda^0 J/\psi & \underline{\tau \sim 10^{-21}} & J/\psi \to \ell^+ \ell^- \\ \Lambda^0_b \to \Lambda^0 \psi(2S) & & & & \\ \end{array} \begin{array}{c} \psi(2S) \to \ell^+ \ell^- & \\ \psi(2S) \to \ell^+ \ell^- \end{array} \end{array} \begin{array}{c} \text{looks like} & \\ \Lambda^0_b \to \Lambda^0 \ell^+ \ell^- \end{array}$$

About resonances (*cc*)

$$\begin{array}{ccc} \Lambda^0_b \to \Lambda^0 J/\psi & \underline{\tau \sim 10^{-21} \text{ s}} & J/\psi \to \ell^+ \ell^- \\ \Lambda^0_b \to \Lambda^0 \psi(2S) & & \psi(2S) \to \ell^+ \ell^- \end{array} \end{array} \begin{array}{c} \text{looks like} \\ \Lambda^0_b \to \Lambda^0 \ell^+ \ell^- \end{array}$$

 q^2 regions of R(Λ)

My role: Quantifying the backgrounds in the high-q² region of R(Λ)

Backgrounds in $\Lambda_b \rightarrow \Lambda^o l^+ l^-$

Mis-identified particles

- A particle in our selection is actually a different particle,
- > looks like it was $\Lambda_b \rightarrow \Lambda^o l^+ l^-$
- ➤ but it was a different decay

Backgrounds in $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$

Mis-identified particles

- A particle in our selection is actually a different particle,
- ► looks like it was $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$
- ➢ but it was a different decay

Becomes

```
\begin{array}{c} B_d \rightarrow K_S \ l^+ \ l^- \\ K_S \rightarrow p \ \pi^- \end{array}
```

Backgrounds in $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$

Mis-identified particles

- A particle in our selection is actually a different particle,
- ► looks like it was $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$
- ➤ but it was a different decay

Becomes

 $\begin{array}{c} \mathsf{B}_{d} \to \mathsf{K}_{\mathsf{c}} \, l^{\mathsf{+}} \, l^{\mathsf{-}} \\ \Lambda^{\mathsf{o}} \to \mathsf{p} \, \pi^{\mathsf{-}} \end{array}$

Backgrounds in $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$

Mis-identified particles

- A particle in our selection is actually a different particle,
- > looks like it was $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$
- ➤ but it was a different decay

Becomes

 $\begin{array}{c} \Lambda_b \longrightarrow \Lambda^o \ l^+ \ l^- \\ \Lambda^o \longrightarrow p \ \pi^- \end{array}$

Backgrounds in $\Lambda_b \rightarrow \Lambda^o l^+ l^-$

Partially reconstructed decays

- We missed particles in the reconstruction,
- > looks like it was $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$
- ➤ but it was a different decay

Backgrounds in $\Lambda_{b} \rightarrow \Lambda^{o}l^{+}l^{-}$

Partially reconstructed decays

- We missed particles in the reconstruction,
- > looks like it was $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$
- ➢ but it was a different decay

Becomes

Example

$$\begin{split} & \bigwedge_{b} \longrightarrow \bigwedge_{c}^{+} \overline{\nu_{l}} l^{-} \\ & \bigwedge_{c}^{+} \longrightarrow \bigwedge^{o} l^{+} \nu_{l} \end{split}$$
Backgrounds in $\Lambda_b \rightarrow \Lambda^o l^+ l^-$

Leakage from other q² regions

Backgrounds in $\Lambda_b \rightarrow \Lambda^o l^+ l^-$

Leakage from other q² regions

Backgrounds in $\Lambda_b \rightarrow \Lambda^o l^+ l^-$

Combinatorial background

- Accidental combinations of tracks,
- ➤ Particle from another decay is matched with the rest of $\Lambda_b \rightarrow \Lambda^o l^+ l^-$

Backgrounds in $\Lambda_{b} \rightarrow \Lambda^{o} l^{+} l^{-}$

Combinatorial background

- Accidental combinations of tracks,
- ➤ Particle from another decay is matched with the rest of $\Lambda_b \rightarrow \Lambda^o l^+ l^-$

Backgrounds in $\Lambda_h \rightarrow \Lambda^o l^+ l^-$

Combinatorial background

- Accidental combinations of tracks, \succ
- Particle from another decay is matched \succ with the rest of $\Lambda_{\rm b} \rightarrow \Lambda^{\rm o} l^+ l^-$

and more...

Combinations of all of the above

Modelling backgrounds by MC fitting

Modelling backgrounds by MC fitting

No MC for combinatorial...

Use same sign data to describe \succ combinatorial background

$$\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^+$$
$$\Lambda_b^0 \to \Lambda^0 \ell^- \ell^-$$

- Violates lepton number conservation \succ
- measurements of these decays are due \succ to accidental combinations

Modelling backgrounds by MC fitting

Is it also realistic?

R2p2, DD, MM, no weights, no cuts, floating yields.

How much do we expect each bkg to contribute?

Nice fit, but...

Is it also realistic?

 \rightarrow idk...

Expected background yields

kg) Eff(bkg) BF(b $N_{\rm bkg}$ $\overline{f_b}$ BF(sig) $N_{\rm sig}$ $\mathrm{Eff}(\mathrm{sig})$ fragmentation ratio obtained from PDG Fraction of decays that make it through selection/reconstruction

Expected background yields

 $\frac{N_{\rm bkg}}{N_{\rm sig}} = \frac{f}{f_b} \frac{\rm BF(bkg)}{\rm BF(sig)} \frac{\rm Eff(bkg)}{\rm Eff(sig)}$ fragmentation ratio
obtained from PDG

Fraction of decays that make it through selection/reconstruction

Results*

background $\Lambda_{b} \rightarrow \Lambda_{c}^{\dagger} \mu^{-} \nu_{\mu}$ $\mathsf{B}_{\mathsf{d}} \rightarrow \mathsf{K}_{\mathsf{s}} \mu^{\dagger} \mu^{\dagger}$ $\Xi_{\rm h} \rightarrow \Xi \mu^{\dagger} \mu^{\dagger}$ $\Lambda_{\rm b} \rightarrow \Lambda(1520)\mu^{-}\mu^{+}$ $\Lambda_{h} \rightarrow \Lambda^{o} \Psi(2S)$

N(bkg)/N(sig) 26% +- 12% 1.9% +- 0.6% 0.4% +- 0.3% 0.1% +- 0.04% 0.07% +- 0.04%

25

*for R2p2, DD, MM, no weights, no cuts

Limiting yields

Using N(bkg)/N(sig) to limit the contributions

R2p2, DD, MM, no weights, no cuts ,limited yields.

Limiting yields

Floating yields

More realistic, higher signal contribution, similar pulls

Are these yields consistent with what we see in the data?

Are these yields consistent with what we see in the data?

$$> B_d \to K_S(\to \pi^+\pi^-)\mu^+\mu^-$$
$$> \Lambda_b^0 \to \Lambda_c^+(\to \Lambda^0\mu^+\nu_\mu)\mu^-\overline{\nu}_\mu$$

$B_d \to K_S(\to \pi^+ \pi^-) \mu^+ \mu^- \qquad \Lambda_b^0 \to \Lambda^0(\to p\pi^-) \mu^+ \mu^-$

- Armenteros-Podolanski plot
- uses momentum asymmetry

A. Moretti Transversity and Λ polarization in semi-inclusive DIS

$B_d \to K_S(\to \pi^+\pi^-)\mu^+\mu^- \qquad \Lambda_b^0 \to \Lambda^0(\to p\pi^-)\mu^+\mu^-$

Moretti Transversity and A polarization in semi-inclusive DIS A.

$B_d \to K_S(\to \pi^+\pi^-)\mu^+\mu^- \qquad \Lambda_b^0 \to \Lambda^0(\to p\pi^-)\mu^+\mu^-$

Moretti Transversity and A polarization in semi-inclusive DIS A.

$B_d \to K_S(\to \pi^+ \pi^-) \mu^+ \mu^- \qquad \Lambda_b^0 \to \Lambda^0(\to p\pi^-) \mu^+ \mu^-$

$B_d \to K_S(\to \pi^+ \pi^-) \mu^+ \mu^- \qquad \Lambda_b^0 \to \Lambda^0(\to p\pi^-) \mu^+ \mu^-$

Contains Combinatorial $^+ B_d \rightarrow K_S(\rightarrow \pi^+\pi^-)\mu^+\mu^ ^+ \Lambda^0_b \rightarrow \Lambda^0(\rightarrow p\pi^-)\mu^+\mu^-$

 $B_d \to K_S(\to \pi^+\pi^-)\mu^+\mu^-$

 $\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-$

 $\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda^0 \mu^+ \nu_\mu) \mu^- \overline{\nu}_\mu$ $m(\Lambda^0\mu^+) \le m(\Lambda_c^+)$

 $\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda^0 \mu^+ \nu_\mu) \mu^- \overline{\nu}_\mu$ $m(\Lambda^0\mu^+) \le m(\Lambda_c^+)$

 $\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-$

 $\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda^0 \mu^+ \nu_\mu) \mu^- \overline{\nu}_\mu$ $m(\Lambda^0\mu^+) \le m(\Lambda_c^+)$

 $\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-$

We expected 26% +- 14% wrt signal

But we don't see a significant contribution in the plot

How?

 $\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda^0 \mu^+ \nu_\mu) \mu^- \overline{\nu}_\mu$ $m(\Lambda^0\mu^+) \le m(\Lambda_c^+)$

 $\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-$

We expected 26% +- 14% wrt signal

But we don't see a significant contribution in the plot

How?

$$\frac{N_{\rm bkg}}{N_{\rm sig}} = \frac{f}{f_b} \frac{\rm BF(bkg)}{\rm BF(sig)} \underbrace{\rm Eff(bkg)}_{\rm Eff(sig)}$$

overestimated, yet to be corrected for

Are these yields consistent with what we see in the data?

$$> B_d \to K_S(\to \pi^+\pi^-)\mu^+\mu^- \quad \text{yes}$$

$$> \Lambda_b^0 \to \Lambda_c^+(\to \Lambda^0\mu^+\nu_\mu)\mu^-\overline{\nu}_\mu \quad \text{no}$$

Outlook

- Get results for electron mode of these backgrounds
- Study partially reconstructed
 backgrounds in the data
- Study the double misID background

 $\Lambda^0_b\to\Lambda^0 h h'$

Outlook

- Get results for electron mode of these backgrounds
- Study partially reconstructedbackgrounds in the data
- Study the double misID background

 $\Lambda^0_b \to \Lambda^0 h h'$

Thank you!

Combinatorial

$$B^0 \to K^0_S \mu^+ \mu^-$$

 $\Lambda^0_b \to \Lambda^* (\to \Sigma^0 (\to \Lambda^0 \gamma) \pi^0) \mu^+ \mu^-$
 $\Lambda^0_b \to \Lambda^+_c (\to \Lambda^0 \mu^+ \nu_\mu) \mu^- \overline{\nu}_\mu$
 $\Lambda^0_b \to \Lambda^0 \psi (2S) (\to \mu^+ \mu^-)$
 $\Xi^-_b \to \Xi^- (\to \Lambda^0 \pi^-) \mu^+ \mu^-$
 $\Xi^0_b \to \Xi^0 (\to \Lambda^0 \pi^0) \mu^+ \mu^-$
 $\Lambda^0_b \to \Lambda^0 h h'$

"LHCb detector performance". In: International Journal of Modern Physics A

"LHCb detector performance". In: International Journal of Modern Physics A

"LHCb detector performance". In: International Journal of Modern Physics A

Particle Identification

"LHCb detector performance". In: International Journal of Modern Physics A

How do we measure $R(\Lambda)$?

I

$$R(\Lambda) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 e^+ e^-)}, \quad \text{where } \Lambda^0 \to p\pi^-$$
$$\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-) = \frac{N_{\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-}}{\epsilon_{\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-} \cdot \mathcal{L} \cdot \sigma_{\Lambda_b^0}},$$

Single ratio:

$$r_{\Lambda} = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 e^+ e^-)} = \frac{N_{\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-}}{N_{\Lambda_b^0 \to \Lambda^0 e^+ e^-}} \cdot \frac{\epsilon_{\Lambda_b^0 \to \Lambda^0 e^+ e^-}}{\epsilon_{\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-}},$$

How do we measure $R(\Lambda)$?

$$R(\Lambda) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda^0 e^+ e^-)}, \quad \text{where } \Lambda^0 \to p\pi^-$$
$$\mathcal{B}(\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-) = \frac{N_{\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-}}{\epsilon_{\Lambda_b^0 \to \Lambda^0 \ell^+ \ell^-} \cdot \mathcal{L} \cdot \sigma_{\Lambda_b^0}},$$

Double ratio:

$$\begin{split} R_{\Lambda} &= r_{\Lambda} \cdot r_{J/\psi}^{-1} \\ &= \frac{N_{\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-}}{N_{\Lambda_b^0 \to \Lambda^0 J/\psi(\to \mu^+ \mu^-)}} \cdot \frac{\epsilon_{\Lambda_b^0 \to \Lambda^0 J/\psi(\to \mu^+ \mu^-)}}{\epsilon_{\Lambda_b^0 \to \Lambda^0 \mu^+ \mu^-}} \cdot \frac{N_{\Lambda_b^0 \to \Lambda^0 e^+ e^-}}{N_{\Lambda_b^0 \to \Lambda^0 J/\psi(\to e^+ e^-)}} \cdot \frac{\epsilon_{\Lambda_b^0 \to \Lambda^0 J/\psi(\to e^+ e^-)}}{\epsilon_{\Lambda_b^0 \to \Lambda^0 e^+ e^-}} \end{split}$$

Lb->L0 Mu Mu branching fraction

 $m(\Lambda_b)^2 - m(\Lambda^0)^2 \approx 20 \text{ GeV}^2$ $m(\Psi(2S) + 50 \text{ MeV})^2 \approx 14.3 \text{GeV}^2$

Lc expected q2 vs MC q2

(a) LAB

(b) CM

Lc mass cut on data

Do you see a difference in red and blue? Me neither

Mick's favourite plot

https://arxiv.org/abs/1912.02110

Floating yields

Bd2KSMM bkgfracsig: 0.1282155540586923 LPT-SS bkgfracsig: 1.676630483220742 Lb2L1520MM bkgfracsig: 0.06487071809282903 Lb2LPsiMM bkgfracsig: 0.04042970022630211 Lb2LcMuNu LMu bkgfracsig: 0.1028827814284571 N Bd2KSMM: 28.927857761698583 N LPT-SS: 378.27959714884105 N Lb2L1520MM: 14.636062837037542 N Lb2LPsiMM: 9.12170622418561 Lb2LcMuNu LMu: 23.212304381790897 N Xib2XiMM: 30,33084666821163 N sig: 225.6189428347865 Xib2XiMM bkgfracsig: 0.13443395437953956

Limiting yields

Bd2KSMM bkgfracsig: 0.03756630295085984 LPT-SS bkgfracsig: 1.6556845810926248 Lb2L1520MM bkgfracsig: 0.0021338808197702798 Lb2LPsiMM bkgfracsig: 0.0016042672031722717 Lb2LcMuNu LMu bkgfracsig: 0.14051609721784727 N Bd2KSMM: 9.370006840619668 N LPT-SS: 412.9705249686093 N Lb2L1520MM: 0.5322450256675306 N Lb2LPsiMM: 0.4001457020556213 N Lb2LcMuNu LMu: 35.048346223228 N Xib2XiMM: 2.3078249659268004 N sig: 249.42584456278527 Xib2XiMM bkgfracsig: 0.009252549470052517

Limiting yields

Floating yields

More realistic, higher signal contribution, similar pulls