# Parton showers with higher logarithmic accuracy





# The perturbative side of QCD showers

- Designed from first principles: its ingredients are QCD matrix elements (MEs) that describe the unresolved limits
- After integration over phase space these MEs give rise to logarithms - roughly:
  - Single unresolved (collinear / soft)  $\rightarrow$  leading and next-to-leading logarithms
  - Double unresolved (triple collinear / double soft)  $\rightarrow$ next-to-next-to-leading logarithms
- Perturbative shower accuracy comes in two forms: 1. Higher-order matching (standard game for the
  - past 20 years)
  - 2. Logarithmic accuracy (the new kid on the block)



# Parton showers: a crucial ingredient

#### An introduction to PYTHIA 8.2

Torbjörn Sjöstrand (Lund U., Dept. Theor. Phys.), Stefan Ask (Cambridge U.), Jesper R. Christiansen (Lund U., Dept. Theor. Phys.), Richard Corke (Lund U., Dept. Theor. Phys.), Nishita Desai (U. Heidelberg, ITP) et al. (Oct 11, 2014)

Published in: Comput.Phys.Commun. 191 (2015) 159-177 · e-Print: 1410.3012 [hep-ph]

∂ DOI 🖃 cite

PYTHIA 6.4 Physics and Manual  $\rightarrow$  13,072 citations

A comprehensive guide to the physics and usage of PYTHIA 8.3  $\rightarrow$  509 citations

#### Event generation with SHERPA 1.1 Herwig++ Physics and Manual #1 T. Gleisberg (SLAC), Stefan. Hoeche (Zurich U.), F. Krauss (Durham U., IPPP), M. M. Bahr (Karlsruhe U., ITP), S. Gieseke (Karlsruhe U., ITP), M.A. Gigg (Durham U., IPPP), D. Grellscheid (Durham U., IPPP), K. Hamilton (Louvain U.) et al. (Mar, 2008) Schonherr (Dresden, Tech. U.), S. Schumann (Edinburgh U.) et al. (Nov, 2008) Published in: Eur. Phys. J.C 58 (2008) 639-707 • e-Print: 0803.0883 [hep-ph] Published in: JHEP 02 (2009) 007 • e-Print: 0811.4622 [hep-ph] $\rightarrow$ 3,098 citations 🤗 links 🔗 DOI 🖃 cite $\rightarrow$ 3,789 citations 🗗 pdf چ) pdf Herwig 7.0/Herwig++ 3.0 release note $\rightarrow$ 1,449 citations Event Generation with Sherpa 2.2 $\rightarrow$ 995 citations

#1

 $\rightarrow$  6,196 citations

Do an amazing job at describing the phenomenology at colliders (and sometimes even beyond colliders)

Melissa van Beekveld







Sherpa

#### Herwig 7



# But differences matter...

VBF production of h + 2j



Colour coherence strongly suppresses radiation in central rapidity region

#### [2003.12435, 2105.11399, 2106.10987]





# But differences matter...

VBF production of h + 2j



Colour coherence strongly suppresses radiation in central rapidity region

#### Pythia's default (global) shower unphysically fills this central region!









# But differences matter...

A precise jet-calibration is important for many SM and BSM searches

Corrects directions and energies of measured jets to the objects produced by the MC

Method is robust to effects from pile-up and underlying event...

Leading uncertainty originates from different parton-shower modeling









# We need to understand what is going on

- Issues can appear in two regimes:

  - 1. Hadronic/non-perturbative (no first-principle model  $\rightarrow$  tune shower) 2. Perturbative (QCD tells us what needs to happen)
- Showers are always tuned  $\rightarrow$  faulty shower descriptions may be tuned away • Problem: you do not control the more differential observables!
- My fear: we tune away new physics by taking a wrong perturbative shower as baseline!
- Standard answer: we cannot control showers...

# The PanScales collaboration



Gavin Salam



Gregory Soyez



Keith Hamilton



Mrinal Dasgupta



Silvia Ferrario Ravasio



Alba Soto Ontoso



Alexander Karlberg



Jack Helliwell



Ludo Scyboz



Silvia Zanoli



Melissa van Beekveld



Pier Monni



Basem El-Menoufi

+ past members Frederic Dreyer Emma Slade Rok Medves Rob Verheyen

# PanScales criteria for logarithmically accurate showers

- Get the correct parton matrix element for kinematic configurations the shower is supposed to control (i.e. soft/collinear for NLL, double-soft/ triple-collinear for NNLL)
- Reproduce analytic resummation results at the claimed accuracy
  - Global event shapes
  - Non-global observables
  - Fragmentation/DGLAP evolution
    Multiplicities

Dasgupta, Dreyer, Hamilton, Monni, Salam [1805.09327], + Soyez [2002.11114]



Not so easy: showers are numerical, resummation semi-analytic

Melissa van Beekveld

[2002.11114]

Not so easy: showers are numerical, resummation semi-analytic

### Consider e.g. Cambridge $y_{23}$

Observable with standard resummation at NLL of the form  $\Sigma_{\text{NLL}}(\lambda, \alpha_s) = \exp\left[-Lg_1(\lambda) + g_2(\lambda)\right]$ with  $\lambda = \alpha_s \ln \sqrt{y_{23}}$ **Tested by taking**  $\frac{\Sigma^{\text{PS}}(\alpha_s L)}{\Sigma^{\text{NLL/NDL}}(\alpha_s L)}$ 

Melissa van Beekveld

[2002.11114]

Not so easy: showers are numerical, resummation semi-analytic

### Consider e.g. Cambridge $y_{23}$



[2002.11114]



Not so easy: showers are numerical, resummation semi-analytic

### Consider e.g. Cambridge $y_{23}$



Every shower produces uncontrolled junk beyond terms described by the  $ME \rightarrow$  we need to isolate the controlled contributions

[2002.11114]



Not so easy: showers are numerical, resummation semi-analytic

### Consider e.g. Cambridge $y_{23}$



Should tend to 1 if the shower is NLL

[2002.11114]



Not so easy: showers are numerical, resummation semi-analytic

### Consider e.g. Cambridge $y_{23}$



Should tend to 1 if the shower is NLL

[2002.11114]



A shower is not a black box, but something we can control

Key is to understand parton showers in the context of analytic resummation

Let's take a theory detour to see this...





 $\ln k_t/Q$ 

# **Available phase** space for emissions

Kinematic edge: the radiated momentum cannot take more than the full emitter energy

> Lund plane [B. Andersson, G. Gustafson, L. Lonnblad, U. Pettersson, 1989]

 $\eta \sim 1/\theta$ 

# Resummation



# Resummation



# Resummation

### Leading-logarithmic (LL) accuracy

We only care about **soft-collinear** emissions that are **well separated** in  $\ln k_t$  and  $\eta$ 

$$dP = \frac{2C_l \alpha_s(k_t)}{\pi} d\eta \, d \ln k_t$$

Simple soft-collinear approximation of the splitting function



# Resummation

### Leading-logarithmic (LL) accuracy

We only care about **soft-collinear** emissions that are **well separated** in  $\ln k_t$  and  $\eta$ 

$$dP = \frac{2C_l \alpha_s(k_t)}{\pi} d\eta \, d \ln k_t$$

Integrating this 'weight' in a region given by the observable constraint will result in  $\alpha_s L^2$  contributions ( $L = \ln(v)$ )

 $\Sigma_{\rm LL}(v < v_{\rm obs}) = \exp\left[-g_1(\alpha_s L)L\right]$ 



# Resummation

#### Next-to-leading-logarithmic (NLL) accuracy

 $\Sigma_{\text{NLL}}(v < v_{\text{obs}}) = \exp\left[-g_1(\alpha_s L)L + g_2(\alpha_s L)\right]$ 







# Resummation

#### Next-to-leading-logarithmic (NLL) accuracy

1. Weight for **soft-collinear** emissions receives NLO correction

$$\begin{aligned} \alpha_s(k_t) \to \alpha_s^{\text{CMW}} &= \alpha_s(k_t) \left( 1 + \frac{\alpha_s(k_t)}{2\pi} K_1 \right) \\ \text{(at 2 loop)} \end{aligned}$$

[Catani, Marchesini, Webber '91]



# Resummation

#### Next-to-leading-logarithmic (NLL) accuracy

1. Weight for **soft-collinear** emissions receives NLO correction

$$\alpha_s(k_t) \to \alpha_s^{\text{CMW}} = \alpha_s(k_t) \left( 1 + \frac{\alpha_s(k_t)}{2\pi} K_1 \right)$$

2. Weight for **soft** or **collinear** emissions must be correct

$$dP = \frac{\alpha_s^{\text{CMW}}(k_t)}{\pi} P_{\tilde{i} \to ij}(z) \ d\eta \, d \ln k_t$$



# Resummation

#### Next-to-leading-logarithmic (NLL) accuracy

1. Weight for **soft-collinear** emissions receives NLO correction

$$\alpha_s(k_t) \to \alpha_s^{\text{CMW}} = \alpha_s(k_t) \left( 1 + \frac{\alpha_s(k_t)}{2\pi} K_1 \right)$$

2. Weight for **soft** or **collinear** emissions must be correct

$$dP = \frac{\alpha_s^{\text{CMW}}(k_t)}{\pi} P_{\tilde{i} \to ij}(z) \ d\eta \, d \ln k_t$$

3. Correlations between soft-collinear emissions that are **separated in only one direction** must be correct (i.e. reduce to independent emission)

The recoil induced by the kinematic maps of showers may spoil this third correction

[Dasgupta, Dreyer, Hamilton, Monni, Salam, 1805.09327]







# With this principle we designed NLL showers (PanGlobal and PanLocal)

*e*<sup>+</sup>*e*<sup>-</sup>: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114] pp: MvB, Ferrario Ravasio, Salam, Soto Ontoso, Soyez, Verheyen [2205.02237]; + Hamilton [2207.09467] DIS and VBF: MvB, Ferrario Ravasio [2305.08645]

# Resummation

#### Next-to-leading-logarithmic (NLL) accuracy

1. Weight for **soft-collinear** emissions receives NLO correction

$$\alpha_s(k_t) \to \alpha_s^{\text{CMW}} = \alpha_s(k_t) \left( 1 + \frac{\alpha_s(k_t)}{2\pi} K_1 \right)$$

2. Weight for **soft** or **collinear** emissions must be correct

$$dP = \frac{\alpha_s^{\text{CMW}}(k_t)}{\pi} P_{\tilde{i} \to ij}(z) \ d\eta \, d \ln k_t$$

3. Correlations between soft-collinear emissions that are **separated in only one direction** must be correct (i.e. reduce to independent emission)



# Resummation

#### Next-to-next-to leading-logarithmic (NNLL) accuracy

 $\Sigma_{\text{NNLL}}(v < v_{\text{obs}}) = \exp\left[-g_1(\alpha_s L)L + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L)\right]$ 







## Resummation

#### Next-to-next-to leading-logarithmic (NNLL) accuracy

1. Shower needs to be **matched** to NLO First emission  $\mathcal{O}(\alpha_s)$  is fully correct

For  $e^+e^-$ : Hamilton, Karlberg, Salam, Scyboz, Verheyen, [2301.09645] For *pp* and DIS: ongoing work





# Resummation

#### Next-to-next-to leading-logarithmic (NNLL) accuracy

- 1. Shower needs to be **matched** to NLO First emission  $\mathcal{O}(\alpha_s)$  is fully correct
  - 2. Commensurate pairs of soft emissions

Need the double-soft MEs



$$|M_{1,2,3,...,n}(p_1, p_2, p_3, ..., p_n)|^2 \xrightarrow{12-\text{soft}} (4\pi\mu^{2\varepsilon}\alpha_s)^2 \sum_{i,j=3}^n \mathcal{I}_{ij}(p_1, p_2) |M_{3,...,n}^{(i,j)}(p_3,...$$

[Campbell, Glover, 9710255 Catani, Grazzini, 9908523]







Melissa van Beekveld

# Resummation

### Next-to-next-to leading-logarithmic (NNLL) accuracy

- 1. Shower needs to be **matched** to NLO First emission  $\mathcal{O}(\alpha_s)$  is fully correct
  - 2. **Commensurate pairs** of soft emissions
  - 3. Soft large-angle emissions @ NLO

$$\alpha_s^{\text{CMW}} \to \alpha_s^{\text{eff}} = \alpha_s(k_t) \left(1 + \frac{\alpha_s(k_t)}{2\pi}(K_1 + \Delta)\right)$$

Corrects for difference in shower kinematics and those of theory calculation for  $K_1$ 

## These corrections bring us **NNDL** multiplicity and NSL nonglobal logarithmic accuracy

[Ferrario Ravasio, Hamilton, Karlberg, Salam, Scyboz, Soyez, 2307.11142]







# Resummation

#### Next-to-next-to leading-logarithmic (NNLL) accuracy

- 1. Shower needs to be **matched** to NLO First emission  $\mathcal{O}(\alpha_s)$  is fully correct
  - 2. **Commensurate pairs** of soft emissions
  - 3. Soft large-angle emissions @ NLO
    - 4. Collinear emissions @ NLO

$$\alpha_s^{\text{eff}} = \alpha_s(k_t) \left( 1 + \frac{\alpha_s(k_t)}{2\pi} (K_1 + \Delta K_1 + B_2 + \Delta K_1) \right)$$

 $B_2$  calculation and tests: Dasgupta, El-Menoufi [2109.07496]; MvB, Dasgupta, El-Menoufi, Helliwell, Monni [2307.15734]; MvB, Dasgupta, El-Menoufi, Helliwell, Karlberg, Monni [2402.05170]







# Resummation

### Next-to-next-to leading-logarithmic (NNLL) accuracy

- 1. Shower needs to be **matched** to NLO First emission  $\mathcal{O}(\alpha_s)$  is fully correct
  - 2. **Commensurate pairs** of soft emissions
  - 3. Soft large-angle emissions @ NLO
    - 4. Collinear emissions @ NLO
- 5. Soft-collinear emissions @ NNLO  $\alpha_s^{\text{eff}} = \alpha_s(k_t)$  (at 3 loop)

$$+\frac{\alpha_s^2(k_t)}{2\pi}(K_1 + \Delta K_1 + B_2 + \Delta B_2) \\ +\frac{\alpha_s^3(k_t)}{2\pi}(K_2 + \Delta K_2)$$

 $K_2$  calculation: Banfi, El-Menoufi, Monni, [1807.11487]; Catani, De Florian, Grazzini, [1904.10365]





Melissa van Beekveld

# Resummation

### Next-to-next-to leading-logarithmic (NNLL) accuracy

- 1. Shower needs to be **matched** to NLO First emission  $\mathcal{O}(\alpha_s)$  is fully correct
  - 2. **Commensurate pairs** of soft emissions
  - 3. Soft large-angle emissions @ NLO
    - 4. Collinear emissions @ NLO
  - 5. Soft-collinear emissions @ NNLO

# Analytically, we expect that this will give us event shapes at NNLL

 $\Sigma_{\text{NNLL}}(v < v_{\text{obs}}) = \exp\left[-g_1(\alpha_s L)L + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L)\right]$ 





Melissa van Beekveld

# Resummation

# Next-to-next-to leading-logarithmic (NNLL) accuracy 1. Shower needs to be **matched** to NLO First emission $\mathcal{O}(\alpha_{\rm s})$ is fully correct form A new standard for the logarithmic accuracy of parton showers [2406.02661] Melissa van Beekveld,<sup>1</sup> Mrinal Dasgupta,<sup>2</sup> Basem Kamal El-Menoufi,<sup>3</sup> Silvia Ferrario Ravasio,<sup>4</sup> Keith Hamilton,<sup>5</sup> Jack Helliwell,<sup>6</sup> Alexander Karlberg,<sup>4</sup> Pier Francesco Monni,<sup>4</sup> Gavin P. Salam,<sup>6,7</sup> Ludovic Scyboz,<sup>3</sup> Alba Soto-Ontoso,<sup>4</sup> and Gregory Soyez<sup>8</sup>

Analytically, we expect that this will give us event shapes at NNLL

 $\Sigma_{\text{NNLL}}(v < v_{\text{obs}}) = \exp\left[-g_1(\alpha_s L)L + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L)\right]$ 





# But we also test this numerically



### Consider again Cambridge $y_{23}$

## **NLL baseline** NNLL discrepancy is O(1)!



#### [2406.02661]

# But we also test this numerically



# **NLL baseline** NNLL discrepancy is O(1)!

#### [2406.02661]

# But we also test this numerically



#### [2406.02661]
## But we also test this numerically



### [2406.02661]

## And not just for one observable...



NNLL discrepancy for  $\lambda = \alpha_s \ln(v) = -0.4$ 



## And not just for one observable/shower...





## And not just for one observable/shower/process







## Relevance for phenomenology?

Longstanding discrepancy between true value of  $\alpha_{s}(M_{z}) = 0.118$  and that needed to describe LEP

## data: $\alpha_{s}(M_{z}) = 0.1365$

[Skands, Carrazza, Rojo, 1404.5630]

0





|   | -  |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|---|----|--------------|----|----|----|-----|----|----------|---|---|----------|----|-----|---|---|---|
|   | ā. | ÷.           | ÷. | ÷. | ÷. | -   |    |          |   |   |          | ÷. | ÷.  |   |   |   |
|   | r  |              |    |    |    | 1   |    | <b>`</b> | 7 |   | ۱.       | 4  |     | 1 |   |   |
|   |    |              | P  |    | ,  | V   |    | Ň        | 6 |   | <u> </u> |    |     | L |   |   |
|   | L. | $\mathbf{Z}$ | ,  |    | _  | L   |    | )        | L |   | )        |    |     | L |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          | •  |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | 2  |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | З. |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | ŝ. |              |    |    |    |     |    |          |   |   |          |    |     |   |   | 1 |
|   | ÷. |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | н, |              |    |    | а, | н,  | н, | 2        | 2 |   |          | 5  | 2   | 5 | 2 |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | 2  |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | 2  |              |    |    |    |     |    |          |   |   |          |    |     | _ |   | - |
|   | З. |              |    |    | _  |     | _  |          |   | 6 |          |    | ) ( | U |   |   |
|   | 4  |              |    |    |    | ) ( |    |          | • |   |          |    |     |   |   |   |
| h | 2  | 2            | 2  |    |    |     |    | 2        |   |   |          |    |     |   | 2 |   |
| - | i. | L            | -  |    |    |     | -  |          | - |   |          |    |     |   |   |   |
|   | н. | L            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | н, | L            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | н, | L            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    | L            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | 1  | K            |    | 2  |    | 1   | 1  | 1        | 1 |   |          | 2  | 1   | 2 | 1 |   |
|   | З. |              | 2  |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | З. | 1            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | З. | L            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | i. | L            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | ÷. | 1            | 1  |    |    | 1   | 1  | 2        | 1 | 1 | 1        |    | 1   | 1 | 2 | ľ |
|   |    | L            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    | L            |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
| _ | ×  |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | 2  | _            | _  |    | _  | _   | _  | _        | _ | _ | _        | _  | _   | _ | _ |   |
|   | Ξ. | 2            | 2  | 2  | 2  | 2   | 2  | 2        | 2 | 2 |          | 2  | 2   | 2 | 2 |   |
|   | 2  |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | 2  |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    | _  |     | _  |          |   |   |          |    |     |   |   |   |
|   | З. | 2            | 2  | 2  | 2  | 2   | 2  | 2        | 2 | 2 |          | 2  | 2   | 2 | 2 |   |
|   | З. |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | З. |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | 2  |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | ÷. |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   | н. |              | 1  |    |    |     |    | 2        | 2 | 1 |          | 2  | 1   | 2 | 1 |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   |   |   |
| _ | 1  |              |    |    |    |     |    |          |   |   |          |    |     |   | _ |   |
|   | 2  | _            |    |    |    |     | _  |          | - |   | _        |    | _   |   |   |   |
|   |    | •            | 1  |    |    |     |    | -        |   |   |          |    |     |   |   |   |
|   | 2  |              | 1  |    | •  |     |    |          |   |   |          |    |     | 1 |   |   |
|   | i. |              |    |    | -  |     |    |          |   |   |          |    |     | Ì |   |   |
|   | l  |              |    |    | •  |     |    | =        |   |   |          | -  |     |   |   |   |
|   |    |              |    |    |    |     |    | -        |   |   |          |    |     |   |   |   |
|   |    |              |    |    | 2  |     |    | -        |   |   |          | 1  |     |   |   |   |
|   |    | •            |    |    |    |     |    |          |   |   |          | -  |     | 1 |   |   |
|   |    | •            |    | •  |    |     |    | -        |   |   | -        | -  |     |   |   |   |
|   |    |              |    | •  |    |     |    | •        |   |   |          |    |     |   | - |   |
|   |    |              |    |    |    |     |    | -        |   |   |          |    |     |   |   |   |
|   |    |              |    | •  |    |     |    | -        |   |   | •        |    |     |   |   |   |
|   |    |              |    | •  |    |     |    | -        |   |   | •        | -  |     |   | • |   |
|   |    |              |    | •  |    | -   |    | -        |   |   |          |    |     |   |   |   |
|   |    |              |    | •  |    |     |    | -        |   |   |          | -  |     |   | - |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   | - |   |
|   |    |              |    |    |    | -   |    | -        |   |   |          | •  |     |   |   |   |
|   |    |              |    | •  |    | -   |    | -        |   |   |          |    |     |   | - |   |
|   |    |              |    | •  |    |     |    | -        |   |   |          | -  |     |   | - |   |
|   |    | •            |    | •  |    | -   |    | -        |   |   |          | -  | -   |   | - |   |
|   |    |              |    | •  |    |     |    | -        |   |   |          |    |     |   | - |   |
|   |    |              |    |    |    | -   |    | -        |   | - | -        | -  |     |   | - |   |
|   |    |              |    | •  |    | -   |    | -        | - | - | -        | -  |     |   |   |   |
|   |    |              |    | •  |    |     |    | -        | - |   | -        |    |     |   | - |   |
|   |    |              |    | •  |    |     |    | -        | - | - | -        |    |     |   |   |   |
|   |    | -            |    | •  |    |     |    | -        |   | - | •        |    |     |   | - |   |
|   |    |              |    |    |    | -   |    | -        |   | - |          |    |     |   | - |   |
|   |    |              |    |    |    | -   |    |          |   | - |          |    |     |   |   |   |
|   |    |              |    | •  |    |     |    | -        |   | - |          |    |     | - |   |   |
|   |    |              |    | •  |    | -   |    |          |   | • | -        |    |     | - |   |   |
|   |    |              |    |    |    | -   |    |          |   | • |          | -  |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   |   |          |    |     |   | - |   |
|   |    |              |    |    |    |     |    |          |   | • |          |    |     | - | - |   |
|   |    |              |    |    |    |     |    |          |   | • |          |    |     |   |   |   |
|   |    |              |    | -  |    |     |    |          |   | • |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    | •        |   | • |          |    |     |   |   |   |
|   |    |              |    |    |    |     |    |          |   | • |          |    |     |   |   |   |
|   |    |              |    | •  |    |     |    |          |   | • |          |    |     |   |   |   |

## Relevance for phenomenology?

Longstanding discrepancy between true value of√  $\alpha_{s}(M_{7}) = 0.118$  and that needed to describe LEP data:  $\alpha_{s}(M_{7}) = 0.1365$ 

# [Skands, Carrazza, Rojo, 1404.563] With our NNLL showers this picture changes: we no longer need an

anomalously large  $\alpha_{s}$  value!

We observe large NNLL corrections for all showers under consideration

![](_page_41_Picture_5.jpeg)

![](_page_41_Figure_7.jpeg)

Pythia8.311 used for hadronisation, Rivet for comparison with LEP data

## Relevance for phenomenology?

Longstanding discrepancy between true value of  $\alpha_s(M_z) = 0.118$  and that needed to describe LEF

> data:  $\alpha_{s}(M_{7}) = 0.1365$ 6 [Skands, Carrazza, Rojo, 1404.5630] 6

With our NNEL showers this picture changes we no longer need an anomalously large  $\alpha_s$  value!

We observe large NIL corrections for all showers unger consideration-Same holds true for other LEP observables

![](_page_42_Figure_7.jpeg)

## Do we still need to tune?

M13: (almost) tune of [Skands, Carrazza, Rojo, 1404.5630] 24A: own tune

![](_page_43_Figure_3.jpeg)

We see that the perturbative region is not much affected by the tune

### Yes - but it does not affect observables that should not be affected!

= hadronisation region

![](_page_43_Picture_9.jpeg)

![](_page_43_Figure_10.jpeg)

## Do we still need to tune?

M13: (almost) tune of [Skands, Carrazza, Rojo, 1404.5630] 24A: own tune

![](_page_44_Figure_3.jpeg)

### Yes - but it does not affect observables that should not be affected!

Infrared unsafe observables are effected (as expected)

![](_page_44_Picture_10.jpeg)

![](_page_44_Figure_11.jpeg)

# Conclusions

- experiment
- available
  - complicated colour structure
- Actively working towards NNLL showers
  - Achieved a big milestone: NNLL showers for  $e^+e^-$  collisions
    - But so far only for PanGlobal, and spin corrections are not compatible with double-soft (work in progress)

  - NNLL for pp and DIS is on the horizon!

git clone --recursive https://gitlab.com/panscales/panscales-0.X

• Parton showers will continue to play an indispensable role in any (future) particle physics

• PanScales NLL showers for massless partons in  $e^+e^-$ , pp and DIS collisions are now

• Next steps include: fast NLO matching, including massive partons, processes with a

• Working to get also triple-collinear corrections for  $e^+e^-$  (relevant for jet-shape observables)

• Beta-version of public code is now available, we'd love to help and receive feedback

![](_page_45_Picture_19.jpeg)

Melissa van Beekveld

# Back up

# Tune parameters

| parameter                       | $\mathrm{PG_0^{sdf}}$ -24A | $PG_0-24A$      | $PG_{1/2}$ -24A | $\mathrm{PG_0^{sdf}}$ -M13 | Monash13      |
|---------------------------------|----------------------------|-----------------|-----------------|----------------------------|---------------|
| $\alpha_s(M_Z)$                 | 0.118                      | 0.118           | 0.118           | 0.118                      | 0.1365        |
| use CMW for $\alpha_s$          | true                       | $\mathbf{true}$ | true            | true                       | false         |
| $n \text{ loops for } \alpha_s$ | 3                          | 3               | 3               | 3                          | 1             |
| $k_{t,\min}$ shower cutoff      | $0.5{ m GeV}$              | $0.5{ m GeV}$   | $0.5{ m GeV}$   | $0.5{ m GeV}$              | $0.5{ m GeV}$ |
| StringPT:sigma                  | 0.3026                     | 0.294           | 0.29            | 0.335                      | 0.335         |
| StringPT:enhancedFraction       | 0.0084                     | 0.0107          | 0.0196          | 0.01                       | 0.01          |
| ${\tt StringPT:enhancedWidth}$  | 1.6317                     | 1.5583          | 2.0             | 2.0                        | 2.0           |
| StringZ:aLund                   | 0.6553                     | 0.7586          | 0.6331          | 0.68                       | 0.68          |
| StringZ:bLund                   | 0.7324                     | 0.7421          | 0.5611          | 0.98                       | 0.98          |
| ${\tt StringZ: aExtraDiquark}$  | 0.9713                     | 0.7267          | 0.8707          | 0.97                       | 0.97          |

![](_page_48_Figure_1.jpeg)

![](_page_48_Figure_2.jpeg)

### **Multiplicity**

![](_page_48_Figure_4.jpeg)

### [2002.11114, 2103.16526, 2011.10054, 2111.01161, 2205.02237, 2207.09467]

# Other tests

### **DGLAP** evolution $10^{-}$ $10^{-}$ $10^{-2}$ $10^{-2}$ $10^{-3}$ $10^{-}$ (x) ↓ 10<sup>-4</sup> $10^{-4}$ 10-5 $10^{-}$ $\hat{i} = \bar{d}$ … î = ₫ i=q lll $10^{-6}$ 10- $10^{-}$ 1.010 1.005 000.1 atio 0.995 PanLocal ( $\beta_{PS} = 0.5$ , antenna) PanLocal ( $\beta_{PS} = 0.5$ , antenna) $0.990 = \sqrt{s}/m_Z = 1000, y_Z = 0$ $\sqrt{s}/m_Z = 1000, y_Z = 0$ $\alpha_s L = -0.5$ $\alpha_{s}L = -0.5$ $10^{-3}$ $10^{-2}$ $10^{-1}$ $10^{0}$ $10^{-3}$ $10^{-2}$ $10^{-1}$

X

X

![](_page_48_Figure_8.jpeg)

![](_page_48_Figure_9.jpeg)

# Matching and log accuracy in parton showers

Long known: do not double-count (i.e. [1003.2384]) Less known: how does that affect the logarithmic accuracy?

- Matching schemes using the shower phasespace to generate the first emission (i.e. MC@NLO, multiplicative matching) don't suffer from this
- With PowHeg-style matching be careful with:
  - Differences in kinematic maps
  - Differences in  $g \rightarrow gg(q\bar{q})$  partitioning
- These lead to  $\mathcal{O}(\alpha_s) = \text{NNDL}$  discrepancies

![](_page_49_Picture_8.jpeg)

![](_page_49_Figure_9.jpeg)

# Matching and log accuracy in parton showers

![](_page_50_Figure_1.jpeg)

[2301.09645]

## This brings us NNDL (=NLL') accuracy!

# Recoil in standard dipole showers

### **Evolution variable** *v*

Which emissions come first?

### **Kinematic map**

How to go from *n* to n + 1 partonic state?

### Matrix element treatment

How to select an 'emitter'?

![](_page_51_Picture_8.jpeg)

### Transverse-momentum ordering

### Dipole-local, with one parton absorbing the recoil

Partioning done at zero rapidity in the dipole rest frame

![](_page_52_Figure_0.jpeg)

η

# Fixed-order criterion

![](_page_53_Figure_1.jpeg)

# We need $k_{t1} = k_{t1}$ for phase-space points where QCD factorisation holds Clear violation of this criterion happens in all publicly available dipole showers

# Fixing the recoil brings NLL accuracy!

# PanGlobal

1. Evolution variable

 $v \sim k_t, k_t \sqrt{\theta}$  (indicated by  $\beta_{ps} = 0, 1/2$ )

- 2. Kinematic map Global *L* Local +/-
- 3. Matrix element treatment Dipole midpoint in *hard-system* CM frame

+ spin correlations [2103.16526, 2111.01161, 2205.02237] + subleading colour corrections  $(1/N_c^2 \sim 0.1 \sim \text{NLL})$  [2011.10054, 2205.02237]

## With this we have NLL showers for $e^+e^-$ , pp and DIS

e<sup>+</sup>e<sup>-</sup>: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114] pp: MvB, Ferrario Ravasio, Salam, Soto Ontoso, Soyez, Verheyen [2205.02237]; + Hamilton [2207.09467] DIS: MvB, Ferrario Ravasio [2305.08645]

# PanLocal

- 1. Evolution variable  $v \sim k_t \sqrt{\theta} \ (\beta_{\rm ps} = 1/2)$
- 2. Kinematic map Local  $\perp$ Local +/-
- 3. Matrix element treatment Dipole midpoint in *hard-system* CM frame

![](_page_54_Picture_14.jpeg)

![](_page_55_Figure_0.jpeg)

These showers meet the fixed-order criterion

![](_page_55_Picture_4.jpeg)

![](_page_55_Picture_7.jpeg)

![](_page_56_Figure_1.jpeg)

Note: this is just a small selection of the tests we did

![](_page_56_Picture_4.jpeg)

![](_page_57_Figure_1.jpeg)

Note: this is just a small selection of the tests we did

![](_page_57_Picture_4.jpeg)

Definition of the cusp anomalous dimension:

![](_page_58_Picture_1.jpeg)

![](_page_58_Figure_4.jpeg)

![](_page_58_Figure_7.jpeg)

![](_page_58_Picture_8.jpeg)

Definition of the cusp anomalous dimension:

![](_page_59_Picture_1.jpeg)

The shower generates virtual corrections through unitarity

![](_page_59_Figure_3.jpeg)

Introduce  $\alpha_s^{\text{CMW}} = \alpha_s$ 

![](_page_59_Picture_5.jpeg)

![](_page_59_Figure_7.jpeg)

$$\left(\frac{\alpha_s}{2\pi}K_1\right)$$
 such that  $\mathbf{V_{PS}} + \int \mathbf{R_{PS}} = \frac{\alpha_s}{2\pi}K_1$ 

![](_page_59_Picture_11.jpeg)

Definition of the cusp anomalous dimension:

![](_page_60_Picture_1.jpeg)

The shower generates virtual corrections through unitarity

![](_page_60_Figure_3.jpeg)

![](_page_60_Picture_5.jpeg)

![](_page_60_Figure_7.jpeg)

![](_page_60_Picture_10.jpeg)

![](_page_61_Figure_0.jpeg)

### Introduce

in shower phase-space holding  $\tilde{1}$  fixed

![](_page_61_Figure_5.jpeg)

![](_page_61_Picture_7.jpeg)

![](_page_61_Picture_8.jpeg)

![](_page_61_Picture_9.jpeg)

![](_page_62_Figure_0.jpeg)

![](_page_62_Picture_1.jpeg)

![](_page_62_Picture_2.jpeg)

![](_page_63_Figure_0.jpeg)

![](_page_63_Figure_1.jpeg)

![](_page_63_Picture_3.jpeg)

![](_page_63_Picture_4.jpeg)

# Towards LHC phenomenology - VBF

![](_page_64_Figure_1.jpeg)

### Error budget dominated by the shower

| Table by M. Pellen,<br>2023 Higgs WG<br>meeting | VBF H | ggH (in<br>VBF-enriched<br>region) |
|-------------------------------------------------|-------|------------------------------------|
| PDF                                             | <1%   | <3%                                |
| QCD scale                                       | <1%   | 2-20%                              |
| UE                                              | <1.5% | <2-3%                              |
| Parton shower                                   | 5-15% | 4-10%                              |

# Towards LHC phenomenology - VBF

- Hard process generated with Pythia at LO accuracy (no beam remnants, hadronisation or multi-parton interaction)
- NNPDF 4.0 LO PDF set
- Shower starting scale is set separately for the two DIS chains
- VBF cuts: at least two jets with  $p_{T,j} > 25 \text{ GeV}, |\eta_j| < 4.5,$  $\Delta \eta_{j_1 j_2} > 4.5, \eta_{j_1} \eta_{j_2} < 0, m_{j_1 j_2} > 600 \text{ GeV}$

![](_page_65_Figure_7.jpeg)

# Towards LHC phenomenology - VBF

- Hard process generated with Pythia at LO accuracy (no beam remnants, hadronisation or multi-parton interaction)
- NNPDF 4.0 LO PDF set
- Shower starting scale is set separately for the two DIS chains
- VBF cuts: at least two jets with  $p_{T,j} > 25 \text{ GeV}, |\eta_j| < 4.5,$  $\Delta \eta_{j_1 j_2} > 4.5, \eta_{j_1} \eta_{j_2} < 0, m_{j_1 j_2} > 600 \text{ GeV}$

[2305.08645]

![](_page_66_Figure_7.jpeg)

# DIS phenomenology at HERA

Rivet analysis for hep-ex/0512014

- HERA at  $\sqrt{s} = 319$  GeV
- $Q \in [14,200]$  GeV,  $y \in [0.1,0.7]$

![](_page_67_Figure_4.jpeg)

Select bins with a not too low Q (dominated by hadronisation and thus the tune) and not too high Q (more sensitive to PDF and less data available)

### Divided up in bins of Q

| of $Q$ bin                     | 1       | 2       | 3       | 4       | 5       | 6        | 7      |
|--------------------------------|---------|---------|---------|---------|---------|----------|--------|
| erval/GeV                      | [14,16] | [16,20] | [20,30] | [30,50] | [50,70] | [70,100] | [100,2 |
| $\langle \rangle / \text{GeV}$ | 14.9    | 17.7    | 23.8    | 36.9    | 57.6    | 80.6     | 115.   |
| $\langle x \rangle$            | 0.00841 | 0.0118  | 0.0209  | 0.0491  | 0.116   | 0.199    | 0.32   |

 $x = \cdot$ 

![](_page_67_Picture_10.jpeg)

# DIS phenomenology at HERA

Rivet analysis for hep-ex/0512014

- HERA at  $\sqrt{s} = 319$  GeV
- $Q \in [14,200]$  GeV,  $y \in [0.1,0.7]$

![](_page_68_Figure_4.jpeg)

![](_page_68_Figure_5.jpeg)

![](_page_68_Figure_6.jpeg)

![](_page_69_Figure_0.jpeg)

- Recoil is taken from the first gluon even when emissions are separated in rapidity
- Separation of dipole in event CM frame is not enough to cure dipole-showers with local maps from locality issue, the transverse momentum ordering is problematic here
- Only when emissions are ordered in angle  $(\beta_{\rm PS} > 0)$  we solve this
- Then commensurate  $k_t$  emissions are ordered in angle, so they take their recoil from the hard system (after boost)

![](_page_69_Figure_8.jpeg)

![](_page_69_Figure_9.jpeg)

![](_page_70_Figure_0.jpeg)

Melissa van Beekveld

- For IF dipoles, momentum of first emission is rescaled by  $b_j = 1 \beta_k$  in map
- For  $\beta=1$  this equates to  $1-\frac{\tilde{s}_i}{\tilde{s}_{ij}}\frac{v}{Q}$  and becomes independent of  $\bar{\eta}$
- Consider change in first emitted parton:

$$p_{k,1} = \tilde{p}_j \to b_j p_{k,1} = \left(1 - \frac{\tilde{s}_i}{\tilde{s}_{ij}} \frac{v_2}{Q}\right) p_{k,1}$$

• With  $\frac{s_i}{\tilde{s}_{ij}} = \frac{2p_i \cdot Q}{2\tilde{p}_i \cdot \tilde{p}_j} = \frac{1}{b_{k,1}}$  and  $b_{k,1} = \beta_{k,1} = \frac{v_1}{Q}$ 

$$\frac{k_{\perp,1}}{k_{\perp,1 \text{ after } 2}} = \left(1 - \frac{v_2}{v_1}\right)$$

![](_page_70_Figure_8.jpeg)

## But we also test this numerically

![](_page_71_Figure_1.jpeg)

### Consider again Cambridge y<sub>23</sub>

![](_page_71_Figure_4.jpeg)