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The perturbative side of QCD showers
• Designed from first principles: its ingredients are QCD 

matrix elements (MEs) that describe the unresolved 
limits 

• After integration over phase space these MEs give rise 
to logarithms - roughly: 
- Single unresolved (collinear / soft)  leading and 

next-to-leading logarithms 
- Double unresolved (triple collinear / double soft)  

next-to-next-to-leading logarithms 

• Perturbative shower accuracy comes in two forms:  
1. Higher-order matching (standard game for the 

past 20 years)  
2. Logarithmic accuracy (the new kid on the block)

→

→
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Herwig 7Pythia 8 Sherpa

Do an amazing job at describing the 
phenomenology at colliders 


(and sometimes even beyond colliders)

Parton showers: a crucial ingredient
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[2003.12435, 2105.11399, 2106.10987]

VBF production of h + 2j

Colour coherence strongly 
suppresses radiation in central 

rapidity region

But differences matter…
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[2003.12435, 2105.11399, 2106.10987]

VBF production of h + 2j
Pythia’s default (global) shower


unphysically fills this central region!

dipole shower (antenna)

dipole shower (local)

Sometimes showers are just 
simply wrong

Colour coherence strongly 
suppresses radiation in central 

rapidity region Pseudorapidity of the third jet

5

But differences matter…



A precise jet-calibration is important for 
many SM and BSM searches

Method is robust to effects from pile-up 
and underlying event…
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Leading uncertainty originates from 
different parton-shower modeling
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[2007.02645]

Difference between  
Pythia8 and Sherpa 

Corrects directions and energies of 
measured jets to the objects 

produced by the MC

[see also 2303.17312]

But differences matter…



Consider measurement of Lund (sub)jet multiplicity
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But differences matter…

[2402.13052]

We see differences between 
1. different showers  

and  
2. showers vs data  
for several analyses 

https://arxiv.org/abs/2402.13052
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We need to understand what is going on
• Issues can appear in two regimes: 

1. Hadronic/non-perturbative (no first-principle model  tune shower) 
2. Perturbative (QCD tells us what needs to happen) 

• Showers are always tuned  faulty shower descriptions may be tuned away 
• Problem: you do not control the more differential observables! 

• My fear: we tune away new physics by taking a wrong perturbative shower as 
baseline! 

• Standard answer: we cannot control showers…

→

→
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PanScales criteria for 
logarithmically accurate showers 

•Get the correct parton matrix element 
for kinematic configurations the 
shower is supposed to control (i.e. 
soft/collinear for NLL, double-soft/
triple-collinear for NNLL)


•Reproduce analytic resummation 
results at the claimed accuracy

- Global event shapes

- Non-global observables

- Fragmentation/DGLAP evolution

- Multiplicities


Dasgupta, Dreyer, Hamilton, Monni, Salam 
[1805.09327], + Soyez [2002.11114]

https://arxiv.org/abs/1805.09327
https://arxiv.org/abs/2002.11114
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[2002.11114]

Testing the resummation of showers
Not so easy: showers are numerical, resummation semi-analytic
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Tested by taking  ?
ΣPS(αsL)

ΣNLL/NDL(αsL)

Consider e.g. Cambridge y23

ΣNLL(λ, αs) = exp [−Lg1(λ) + g2(λ)]

Observable with standard resummation  
at NLL of the form

with λ = αs ln y23

[2002.11114]

Testing the resummation of showers
Not so easy: showers are numerical, resummation semi-analytic
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[2002.11114]
Testing accuracy

Idea for testing:

⌃MC (�=↵sL,↵s)

⌃NLL(�=↵sL,↵s)

v. 1

with � = ↵sL

NLL deviations

or

subleading e↵ects?

Gregory Soyez The quest for precision across scales June 12 2020, BNL 21 / 29

Correctly reproduce              for N well 
separated emissions in the Lund plane

Targeted accuracy of PanScales showers: NLL

7

|ℳ2→n |2

NLL accuracy for a wide range of observables

ΣMC(λ)
ΣNLL(λ)

NLL deviation
or

NNLL effect?

η
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[Dasgupta et al. PRL 125 (2020)]
[Dasgupta et al. JHEP 09 (2018) 033]

ΣPS
(λ

)/
ΣN

LL
(λ

)

Tested by taking  ?
ΣPS(αsL)

ΣNLL/NDL(αsL)

ΣNLL(λ, αs) = exp [−Lg1(λ) + g2(λ)]

Observable with standard resummation  
at NLL of the form

with λ = αs ln y23

Many plots will be a 
function of λ ≡ αsL

Consider e.g. Cambridge y23

Testing the resummation of showers
Not so easy: showers are numerical, resummation semi-analytic
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Testing accuracy

Idea for testing:

⌃MC (�=↵sL,↵s)

⌃NLL(�=↵sL,↵s)

v. 1

with � = ↵sL

NLL deviations

or

subleading e↵ects?

Gregory Soyez The quest for precision across scales June 12 2020, BNL 21 / 29

Correctly reproduce              for N well 
separated emissions in the Lund plane

Targeted accuracy of PanScales showers: NLL

7

|ℳ2→n |2

NLL accuracy for a wide range of observables

ΣMC(λ)
ΣNLL(λ)

NLL deviation
or

NNLL effect?

η

 [G
eV
]

lo
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t

[Dasgupta et al. PRL 125 (2020)]
[Dasgupta et al. JHEP 09 (2018) 033]

ΣPS
(λ

)/
ΣN

LL
(λ

)

Tested by taking  ?
ΣPS(αsL)

ΣNLL/NDL(αsL)

ΣNLL(λ, αs) = exp [−Lg1(λ) + g2(λ)]

Observable with standard resummation  
at NLL of the form

with λ = αs ln y23

Deviates from 1:  
NLL mistake? 

… or contribution from 
subleading terms?

[2002.11114]

Every shower produces uncontrolled 
junk beyond terms described by the 

ME  we need to isolate the 
controlled contributions

→

Consider e.g. Cambridge y23

Testing the resummation of showers
Not so easy: showers are numerical, resummation semi-analytic
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Testing accuracy

Idea for testing:

⌃MC (�=↵sL,↵s)

⌃NLL(�=↵sL,↵s)

v. 1

with � = ↵sL

NLL deviations

or

subleading e↵ects?

Gregory Soyez The quest for precision across scales June 12 2020, BNL 21 / 29

Correctly reproduce              for N well 
separated emissions in the Lund plane

Targeted accuracy of PanScales showers: NLL
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|ℳ2→n |2

NLL accuracy for a wide range of observables

ΣMC(λ)
ΣNLL(λ)

NLL deviation
or

NNLL effect?

η

 [G
eV
]

lo
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t

[Dasgupta et al. PRL 125 (2020)]
[Dasgupta et al. JHEP 09 (2018) 033]

ΣPS
(λ

)/
ΣN

LL
(λ

)

Tested by taking  ?
ΣPS(αsL)

ΣNLL/NDL(αsL)

ΣNLL(λ, αs) = exp [−Lg1(λ) + g2(λ)]

Observable with standard resummation  
at NLL of the form

with λ = αs ln y23

Tested by taking lim
αs→0

ΣPS(αsL)
ΣNLL/NDL(αsL)

Should tend to 1 if the shower is NLL

[2002.11114]

Consider e.g. Cambridge y23

Testing the resummation of showers
Not so easy: showers are numerical, resummation semi-analytic



Correctly reproduce              for N well 
separated emissions in the Lund plane

Targeted accuracy of PanScales showers: NLL

7

|ℳ2→n |2

NLL accuracy for a wide range of observables

lim
αs→0

ΣMC(λ)
ΣNLL(λ) → 1

Testing accuracy

Idea for testing:

⌃MC (�=↵sL,↵s)

⌃NLL(�=↵sL,↵s)

↵s!0
�! 1

at fixed � = ↵sL

NLL deviations

or

subleading e↵ects?

Gregory Soyez The quest for precision across scales June 12 2020, BNL 21 / 29

NLL deviation
or

NNLL effect?

[Dasgupta et al. PRL 125 (2020)]
[Dasgupta et al. JHEP 09 (2018) 033]

[C
ourtesy of G

.Soyez]η

 [G
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]

lo
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t

ΣPS
(λ

)/
ΣN

LL
(λ

)

Clear deviation 
from 1 in the 

 limitαs → 0Melissa van Beekveld11

Tested by taking  ?
ΣPS(αsL)

ΣNLL/NDL(αsL)

ΣNLL(λ, αs) = exp [−Lg1(λ) + g2(λ)]

Observable with standard resummation  
at NLL of the form

with λ = αs ln y23

Tested by taking lim
αs→0

ΣPS(αsL)
ΣNLL/NDL(αsL)

Should tend to 1 if the shower is NLL

[2002.11114]

Consider e.g. Cambridge y23

Testing the resummation of showers
Not so easy: showers are numerical, resummation semi-analytic
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Key is to understand parton showers 
in the context of analytic resummation

A shower is not a black box, 
but something we can control

Let’s take a theory detour to see this…
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Lund plane [B. Andersson, G. 
Gustafson, L. Lonnblad, U. 

Pettersson, 1989]

Available phase 
space for 
emissions

Kinematic edge: the radiated momentum  
cannot take more than the full emitter energy 
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ln kt /Q

η ∼ 1/θ

Shower Resummation

co
llin

ea
r collinear

softsoft

hard

soft-collinear soft-collinear
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ln kt /Q

η ∼ 1/θ

Shower Resummation
Leading-logarithmic (LL) accuracy

dP =
2Clαs(kt)

π
dη d ln kt

We only care about soft-collinear emissions 
that are well separated in  and ln kt η

@LL

Needs  corrections𝒪(αn
s Ln+1)

for event shapes

Simple soft-collinear 
approximation of 

the splitting function
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ln kt /Q

η ∼ 1/θ

Shower Resummation
Leading-logarithmic (LL) accuracy

We only care about soft-collinear emissions 
that are well separated in  and ln kt η

Integrating this ‘weight’ in a region given by the 
observable constraint will result in  

contributions ( )
αsL2

L = ln(v)
v = vobs

ΣLL(v < vobs) = exp [−g1(αsL)L]

dP =
2Clαs(kt)

π
dη d ln kt

@LL
for event shapes

Needs  corrections𝒪(αn
s Ln+1)
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ln kt /Q

η ∼ 1/θ

Shower Resummation

v = vobs

Next-to-leading-logarithmic (NLL) accuracy

Needs  corrections𝒪(αn
s Ln)

@NLL

ΣNLL(v < vobs) = exp [−g1(αsL)L + g2(αsL)]

for event shapes
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ln kt /Q

η ∼ 1/θ

Shower Resummation

αs(kt) → αCMW
s = αs(kt)(1 +

αs(kt)
2π

K1)

Next-to-leading-logarithmic (NLL) accuracy

1. Weight for soft-collinear emissions 
receives NLO correction

[Catani, Marchesini, Webber ’91]

Needs  corrections𝒪(αn
s Ln)

@NLL

(at 2 loop)

for event shapes
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-leading-logarithmic (NLL) accuracy

1. Weight for soft-collinear emissions 
receives NLO correction

2. Weight for soft or collinear emissions must 
be correct

Needs  corrections𝒪(αn
s Ln)

@NLL

αs(kt) → αCMW
s = αs(kt)(1 +

αs(kt)
2π

K1)

dP =
αCMW

s (kt)
π

Pĩ→ij(z) dη d ln kt

for event shapes
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-leading-logarithmic (NLL) accuracy

1. Weight for soft-collinear emissions 
receives NLO correction

2. Weight for soft or collinear emissions must 
be correct

3. Correlations between soft-collinear emissions 
that are separated in only one direction must 
be correct (i.e. reduce to independent emission)

dP =
αCMW

s (kt)
π

Pĩ→ij(z) dη d ln kt

The recoil induced by the kinematic maps of showers 
may spoil this third correction

[Dasgupta, Dreyer, Hamilton, Monni, Salam, 1805.09327] 

Needs  corrections𝒪(αn
s Ln)

@NLL

αs(kt) → αCMW
s = αs(kt)(1 +

αs(kt)
2π

K1)

for event shapes
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-leading-logarithmic (NLL) accuracy

1. Weight for soft-collinear emissions 
receives NLO correction

2. Weight for soft or collinear emissions must 
be correct

3. Correlations between soft-collinear emissions 
that are separated in only one direction must 
be correct (i.e. reduce to independent emission)

dP =
αCMW

s (kt)
π

Pĩ→ij(z) dη d ln kt

Needs  corrections𝒪(αn
s Ln)

@NLL

αs(kt) → αCMW
s = αs(kt)(1 +

αs(kt)
2π

K1)

for event shapes

With this principle we designed NLL showers (PanGlobal and PanLocal)
: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114]  


pp: MvB, Ferrario Ravasio, Salam, Soto Ontoso, Soyez, Verheyen [2205.02237]; + Hamilton [2207.09467] 

DIS and VBF: MvB, Ferrario Ravasio [2305.08645]

e+e−

https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2207.09467
https://arxiv.org/abs/2305.08645
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

Needs  corrections𝒪(αn
s Ln−1)

ΣNNLL(v < vobs) = exp [−g1(αsL)L + g2(αsL) + αsg3(αsL)]

@NNLL

v = vobs

for e+e- event shapes
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

Needs  corrections𝒪(αn
s Ln−1)

@NNLL

First emission  is fully correct 𝒪(αs)
1. Shower needs to be matched to NLO

for e+e- event shapes

For :  
Hamilton,  Karlberg,  Salam,  Scyboz,  

Verheyen, [2301.09645] 
For  and DIS: ongoing work

e+e−

pp
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

Needs  corrections𝒪(αn
s Ln−1)

@NNLL

1. Shower needs to be matched to NLO
First emission  is fully correct 𝒪(αs)

2. Commensurate pairs of soft emissions

Need the double-soft MEs

[Campbell, Glover, 9710255 
Catani, Grazzini, 9908523]

for e+e- event shapes



αCMW
s → αeff

s = αs(kt)(1 +
αs(kt)

2π
(K1 + ΔK1))
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

@NNLL

1. Shower needs to be matched to NLO
First emission  is fully correct 𝒪(αs)

3. Soft large-angle emissions @ NLO

2. Commensurate pairs of soft emissions

Corrects for difference in 
shower kinematics and those of 

theory calculation for K1

for e+e- event shapes

These corrections bring us 
NNDL multiplicity and NSL non-

global logarithmic accuracy
[Ferrario Ravasio, Hamilton, Karlberg, 
Salam, Scyboz, Soyez, 2307.11142]

https://arxiv.org/abs/2307.11142
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

@NNLL

1. Shower needs to be matched to NLO
First emission  is fully correct 𝒪(αs)

3. Soft large-angle emissions @ NLO

2. Commensurate pairs of soft emissions

4. Collinear emissions @ NLO

for e+e- event shapes

αeff
s = αs(kt)(1 +

αs(kt)
2π

(K1 + ΔK1 + B2 + ΔB2))
 calculation and tests: Dasgupta, El-Menoufi [2109.07496]; 


MvB, Dasgupta, El-Menoufi, Helliwell, Monni [2307.15734]; 

MvB, Dasgupta, El-Menoufi, Helliwell, Karlberg, Monni 

[2402.05170]

B2

https://arxiv.org/abs/2109.07496
https://arxiv.org/abs/2307.15734
https://arxiv.org/abs/2402.05170
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ln kt /Q

η ∼ 1/θ

Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

@NNLL

1. Shower needs to be matched to NLO
First emission  is fully correct 𝒪(αs)

3. Soft large-angle emissions @ NLO

2. Commensurate pairs of soft emissions

4. Collinear emissions @ NLO

5. Soft-collinear emissions @ NNLO

αeff
s = αs(kt)

+
α2

s (kt)
2π

(K1 + ΔK1 + B2 + ΔB2)

+
α3

s (kt)
2π

(K2 + ΔK2)

(at 3 loop)

for e+e- event shapes

 calculation: Banfi, El-Menoufi, Monni,[1807.11487]; 
Catani, De Florian, Grazzini,[1904.10365]

K2
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Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

@NNLL

1. Shower needs to be matched to NLO
First emission  is fully correct 𝒪(αs)

3. Soft large-angle emissions @ NLO

2. Commensurate pairs of soft emissions

4. Collinear emissions @ NLO

5. Soft-collinear emissions @ NNLO

ln kt /Q

η ∼ 1/θ

v = vobs

ΣNNLL(v < vobs) = exp [−g1(αsL)L + g2(αsL) + αsg3(αsL)]

Analytically, we expect 
that this will give us 

event shapes at NNLL

for e+e- event shapes
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Shower Resummation

Next-to-next-to leading-logarithmic (NNLL) accuracy

@NNLL

1. Shower needs to be matched to NLO
First emission  is fully correct 𝒪(αs) [2301.09645]

3. Soft large-angle emissions @ NLO

2. Commensurate pairs of soft emissions

4. Collinear emissions @ NLO

5. Soft-collinear emissions @ NNLO

ln kt /Q

η ∼ 1/θ

v = vobs

ΣNNLL(v < vobs) = exp [−g1(αsL)L + g2(αsL) + αsg3(αsL)]

Analytically, we expect 
that this will give us 

event shapes at NNLL

for e+e- event shapes

[2406.02661]
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But we also test this numerically

NLL baseline NNLL discrepancy is O(1)!

Consider again Cambridge y23

[2406.02661]
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NLL baseline NNLL discrepancy is O(1)!

+ matching and double-soft real 
emission corrections

But we also test this numerically
[2406.02661]
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NLL baseline NNLL discrepancy is O(1)!

+ 3-loop  running, NNLO soft-
collinear  and NLO collinear 

normalisation 

αs
(K2)

(B2)

But we also test this numerically

+ matching and double-soft real 
emission corrections

[2406.02661]



29

NLL baseline NNLL discrepancy is O(1)!

+ 3-loop  running, NNLO soft-
collinear  and NLO collinear 

normalisation 

αs
(K2)

(B2)

+  correctionΔ

But we also test this numerically

+ matching and double-soft real 
emission corrections

[2406.02661]



30 NNLL discrepancy for λ = αs ln(v) = − 0.4

And not just for one observable/shower/process… [2406.02661]
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And not just for one observable/shower process

NNLL discrepancy for λ = αs ln(v) = − 0.4

… [2406.02661]
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And not just for one observable/shower/process

NNLL discrepancy for λ = αs ln(v) = − 0.4

[2406.02661]
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Relevance for phenomenology?
Longstanding discrepancy between true value of 

 and that needed to describe LEP 
data: 

αs(Mz) = 0.118
αs(Mz) = 0.1365
[Skands, Carrazza, Rojo, 1404.5630]

Also observed for our showers, 
i.e. with :αs(Mz) = 0.118

T

[2406.02661]

31
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Longstanding discrepancy between true value of 
 and that needed to describe LEP 

data: 
αs(Mz) = 0.118

αs(Mz) = 0.1365

With our NNLL showers this picture 
changes: we no longer need an 

anomalously large  value!αs

Pythia8.311 used for hadronisation, Rivet for comparison with LEP data 

We observe large NNLL 
corrections for all 
showers under 
consideration 

Same holds true for 
other LEP observables

[2406.02661]

[Skands, Carrazza, Rojo, 1404.5630]

Relevance for phenomenology?
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Longstanding discrepancy between true value of 
 and that needed to describe LEP 

data: 
αs(Mz) = 0.118

αs(Mz) = 0.1365

With our NNLL showers this picture 
changes: we no longer need an 

anomalously large  value!αs

Pythia8.311 used for hadronisation, Rivet for comparison with LEP data 

We observe large NNLL 
corrections for all 
showers under 
consideration 

Same holds true for 
other LEP observables

[Skands, Carrazza, Rojo, 1404.5630]

Relevance for phenomenology?

NLL

NNLL

[2406.02661]
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Yes - but it does not affect observables that 
should not be affected!Do we still need to tune? [2406.02661]

M13: (almost) tune of [Skands, Carrazza, Rojo, 1404.5630] 
24A: own tune

= hadronisation region

We see that the perturbative region 
is not much affected by the tune
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Yes - but it does not affect observables that 
should not be affected!Do we still need to tune? [2406.02661]

M13: (almost) tune of [Skands, Carrazza, Rojo, 1404.5630] 
24A: own tune

Infrared unsafe observables are 
effected (as expected)
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• Parton showers will continue to play an indispensable role in any (future) particle physics 
experiment

• PanScales NLL showers for massless partons in , pp and DIS collisions are now 
available 
• Next steps include: fast NLO matching, including massive partons, processes with a 

complicated colour structure

• Actively working towards NNLL showers
• Achieved a big milestone: NNLL showers for  collisions

• But so far only for PanGlobal, and spin corrections are not compatible with double-soft 
(work in progress)

• Working to get also triple-collinear corrections for   (relevant for jet-shape observables)
• NNLL for pp and DIS is on the horizon!

• Beta-version of public code is now available, we’d love to help and receive feedback 

e+e−

e+e−

e+e−

Conclusions



Back up

Melissa van Beekveld



Tune parameters

Melissa van Beekveld48



Non-global observables

49

DGLAP evolutionMultiplicity

Fixed-order checks

[2002.11114, 2103.16526, 2011.10054, 
2111.01161, 2205.02237, 2207.09467]Other tests



• Matching schemes using the shower phase-
space to generate the first emission (i.e. 
MC@NLO, multiplicative matching) don’t 
suffer from this


• With PowHeg-style matching be careful with:

• Differences in kinematic maps

• Differences in  partitioning


• These lead to  = NNDL discrepancies

g → gg(qq̄)

𝒪(αs)

[2301.09645]

34

Long known: do not double-count (i.e. [1003.2384]) 
Less known: how does that affect the logarithmic accuracy?

Matching and log accuracy in parton showers



Melissa van Beekveld35 This brings us NNDL (=NLL’) accuracy!

[2301.09645]

Matching and log accuracy in parton showers
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Kinematic map 
How to go from  to  partonic state?
n n + 1

Evolution variable  
Which emissions come first?


v

Matrix element treatment 
How to select an ‘emitter’?


Transverse-momentum ordering

Dipole-local, with one 
parton absorbing the 

recoil

Partioning done at zero 
rapidity in the dipole rest 

frame

Recoil in standard dipole showers
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We need  for phase-space points where QCD factorisation holdskt1 = k̃t1

Region not 
relevant for 
NLL

q q̄

1̃

NLL expectation:  
should not change as 
an effect of the  
recoil

kt,1

kt,2

η1̃ = − ln tan θ1̃ /2
θ1̃

Fixed-order criterion



NOT OK
OK OK

28

We need  for phase-space points where QCD factorisation holdskt1 = k̃t1

Clear violation of this criterion  
happens in all publicly available dipole showers

q q̄

1̃ → 1 22
22

Region where the 1st 
emission recoils:
⃗kt,1 → ⃗kt,1 − ⃗kt,2

Fixed-order criterion



Melissa van Beekveld29

1. Evolution variable  
     (indicated by ) 

2. Kinematic map 
    Global  
    Local  

3. Matrix element treatment 
    Dipole midpoint in hard-system CM frame

v ∼ kt, kt θ βps = 0, 1/2

⊥
+/−

PanGlobal PanLocal
1. Evolution variable  
     ( ) 

2. Kinematic map 
    Local      
    Local  

3. Matrix element treatment 
    Dipole midpoint in hard-system CM frame

v ∼ kt θ βps = 1/2

⊥
+/−

+ spin correlations 
+ subleading colour corrections

[2103.16526, 2111.01161, 2205.02237]
[2011.10054, 2205.02237](1/N2

c ∼ 0.1 ∼ NLL)

With this we have NLL showers for ,  and DISe+e− pp
: Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114]  


pp: MvB, Ferrario Ravasio, Salam, Soto Ontoso, Soyez, Verheyen [2205.02237]; + Hamilton [2207.09467] 

DIS: MvB, Ferrario Ravasio [2305.08645]

e+e−

Fixing the recoil brings NLL accuracy!

https://arxiv.org/abs/2103.16526
https://arxiv.org/abs/2111.01161
https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2207.09467
https://arxiv.org/abs/2305.08645
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PanLocalPanGlobal 

These showers meet the 
fixed-order criterion

OKOK OK OK

q q̄

1̃

q q̄

1 22
22

Fixed-order criterion



Sp/j,β = ∑
i∈f/jets

p⊥,i e−β|ηi|

Mj,β = max
i∈jets

[p⊥,i e−β|ηi|]

Not NLL NLL

31 Note: this is just a small selection of the tests we did

Global observables NLL tests for pp → Z



Sp/j,β = ∑
i∈f/jets

p⊥,i e−β|ηi|

Mj,β = max
i∈jets

[p⊥,i e−β|ηi|]

Not NLL NLL

31 Note: this is just a small selection of the tests we did

NLL for colour singlet production is under 
control, but we want to push further

Global observables NLL tests for pp → Z
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V
=

αs

2π
K1+ R∫

y, p⊥

fixed

Definition of the 
cusp anomalous 

dimension:

(plus )g → qq̄
This is the NLO 
weight for a soft 

emission

[2307.11142]

https://arxiv.org/abs/2307.11142
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The shower 
generates virtual 

corrections 
through unitarity VPS

≡ − ∫ R

V
=

αs

2π
K1+ R∫

y, p⊥

fixed

Definition of the 
cusp anomalous 

dimension:

(plus )g → qq̄
This is the NLO 
weight for a soft 

emission

[2307.11142]

αCMW
s = αs (1 +

αs

2π
K1)Introduce such that VPS + ∫ RPS =

αs

2π
K1

https://arxiv.org/abs/2307.11142
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The shower 
generates virtual 

corrections 
through unitarity VPS

≡ − ∫ R

αCMW
s = αs (1 +

αs

2π
K1)Introduce such that VPS + ∫ RPS =

αs

2π
K1

Shower violates this for 
soft wide-angle 

emissions

V
=

αs

2π
K1+ R∫

y, p⊥

fixed

Definition of the 
cusp anomalous 

dimension:

(plus )g → qq̄
This is the NLO 
weight for a soft 

emission

[2307.11142]

https://arxiv.org/abs/2307.11142
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ΔK1(1̃)Introduce R∫ Rsc∫= −

in shower 

phase-space 
holding  fixed1̃

in shower 

phase-space 

holding  fixed1̃sc

[2307.11142]

https://arxiv.org/abs/2307.11142
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ΔK1(1̃)Introduce R∫ Rsc∫= −

in shower 

phase-space 
holding  fixed1̃

in shower 

phase-space 

holding  fixed1̃sc
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FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.

y

Δ
K

(y
PS

)

Soft large-angle 
emissions can have 

a large ΔK1

Soft-collinear emissions 
are already OK (because 
the shower is NLL) 

[2307.11142]

https://arxiv.org/abs/2307.11142
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ΔK1(1̃)Introduce R∫ Rsc∫= −

in shower 

phase-space 
holding  fixed1̃

in shower 

phase-space 

holding  fixed1̃sc
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FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.

y

Δ
K

(y
PS

)

Split-dipole-frame 
(SDF): shower with 

ΔK1 = 0

[2307.11142]

https://arxiv.org/abs/2307.11142
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Towards LHC phenomenology - VBF

Error budget dominated by the shower
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Towards LHC phenomenology - VBF

• Hard process generated with Pythia at LO 
accuracy (no beam remnants, hadronisation 
or multi-parton interaction)


• NNPDF 4.0 LO PDF set


• Shower starting scale is set separately for 
the two DIS chains


• VBF cuts: at least two jets with        
 GeV, ,           

,   GeV
pT,j > 25 |ηj | < 4.5
Δηj1j2 > 4.5 ηj1ηj2 < 0, mj1j2 > 600

For observables 
that are non-

vanishing at LO, the 
LL shower lies in-

between the spread 
of NLL showers

[2305.08645]

Mass of two most energetic jets (GeV)
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Towards LHC phenomenology - VBF

• Hard process generated with Pythia at LO 
accuracy (no beam remnants, hadronisation 
or multi-parton interaction)


• NNPDF 4.0 LO PDF set


• Shower starting scale is set separately for 
the two DIS chains


• VBF cuts: at least two jets with        
 GeV, ,           

,   GeV
pT,j > 25 |ηj | < 4.5
Δηj1j2 > 4.5 ηj1ηj2 < 0, mj1j2 > 600

All feature right 
suppression in 
central rapidity 

region

Shows largest 
difference with the 

NLL showers

[2305.08645]

Rapidity of the third jet



DIS phenomenology at HERA
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Rivet analysis for hep-ex/0512014

•  HERA at  GeV

•   GeV, 


Select bins with a not too low  (dominated by hadronisation and thus the tune) and 
not too high  (more sensitive to PDF and less data available)

s = 319
Q ∈ [14,200] y ∈ [0.1,0.7]

Q
Q

Divided up in bins of Q

x =
Q2

sy



DIS phenomenology at HERA

37

Rivet analysis for hep-ex/0512014

•  HERA at  GeV

•   GeV, 


Select bins with a not too low  (dominated by hadronisation and thus the tune) and 
not too high  (more sensitive to PDF and less data available)

s = 319
Q ∈ [14,200] y ∈ [0.1,0.7]

Q
Q

Note  and 
 regions are 

dominated by (absent) 
matching corrections

τ → 1
B → 0.5

Overal we observe 
good agreement



PanLocal issue for βPS = 0

Melissa van Beekveld

•Separation of dipole in event CM frame is not 
enough to cure dipole-showers with local maps 
from locality issue, the transverse momentum 
ordering is problematic here

•Only when emissions are ordered in angle 
( ) we solve thisβPS > 0

•Recoil is taken from the first gluon even when 
emissions are separated in rapidity

•Then commensurate  emissions are ordered in 
angle, so they take their recoil from the hard 
system (after boost)

kt



Issue for βPS = 1

Melissa van Beekveld

•With                                and 

•For  this equates to                and becomes 
independent of 

β = 1
η̄

•For IF dipoles, momentum of first emission is 
rescaled by  in mapbj = 1 − βk

1 −
s̃i

s̃ij

v
Q

•Consider change in first emitted parton:

pk,1 = p̃j → bjpk,1 = (1 −
s̃i

s̃ij

v2

Q ) pk,1

s̃i

s̃ij
=

2p̃i ⋅ Q
2p̃i ⋅ p̃j

=
1

bk,1
bk,1 = βk,1 =

v1

Q

k⊥,1

k⊥,1 after 2
= (1 −

v2

v1 )
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But we also test this numerically

Consider again Cambridge y23

Test NNLL by taking lim
αs→0

ln ΣPS − ln ΣNNLL

α2
s ln ΣNNLL

Why?

ln ΣPS = gPS
1 (λ)L + gPS

2 (λ) + αsgPS
3 (λ)

ln ΣNNLL = gNNLL
1 (λ)L + gNNLL

2 (λ) + αsgNNLL
3 (λ)

We know gPS
1 (λ) = gNNLL

1 (λ) gPS
2 (λ) = gNNLL

2 (λ)

lim
αs→0

ln ΣPS − ln ΣNNLL

α2
s ln ΣNNLL

=
gPS

3 (λ) − gNNLL
3 (λ)

g1(λ)


