Hunting for the positively charged excess

Group 7: Giuseppe De Mauro - Naghmeh Mohammadi - Mick Mulder - Tim Wolf

Physics background

V

Ε

Experiment Setup

70cm

Declination angle: 45 deg

Distance between the scintillators: 45 cm

Opening angle: 18.4 deg

Calculations

$$A = \frac{N_{east} - N_{west}}{N_{east} + N_{west}}$$

$$\Delta A = \frac{2}{(N_{east} + N_{west})^2} \sqrt{(N_{east} \Delta N_{west})^2 + (N_{west} \Delta N_{east})^2}$$

Error: $\Delta A_{tot} = \frac{1}{2} \sqrt{(\Delta A_1)^2 + (\Delta A_2)^2}$
Combination: $A_{tot} = \frac{A_1 + A_2}{2}$

Systematic check:

Average relative efficiency difference $\Delta A/A = 3\%$

	# measurement 1	# measurement 2
N(east)	1020	1060
N(west)	974	935
N(tot)	1994	1995

Charge asymmetry:

 measurement 1:
 $A_1 = (2.3 \pm 2.2)\%$

 measurement 2:
 $A_2 = (6.3 \pm 2.3)\%$

 average of both measurements:
 $A_{tot} = (4.3 \pm 1.6)\%$

$2,7\sigma = 99,7\%$ certainty excess of positively charged particles

Conclusions and outlook

- An excess of 4,3% has been seen with ~3σ significance
- Limited by statistics
- More measurements foreseen
- Background check needed: for random events