Measurement

- Two independent units: SN09 and SN36
- Four measurement in total, exchanging direction East/West.
- Now come the nitty gritty details...

Error Calculation

Error on rate

- Measure number of events N in time t \Rightarrow rate $r \equiv N / t$
- Error on time measurement is negligible
- Error on number of events is likely Poisson $1 / \sqrt{N}$
- Total error on rate is $\sigma(r)=r / \sqrt{N}$

Error Calculation

Error on rate difference

- We have two rates, one facing East, one facing West
- Total error on rate difference is just sum-of-squares of individual errors

$$
\begin{gathered}
\Delta r \equiv r_{E}-r_{W} \\
\sigma(\Delta r)=\sqrt{\sigma\left(r_{E}\right)^{2}+\sigma\left(r_{W}\right)^{2}}
\end{gathered}
$$

Error Calculation

Define East-West asymmetry A as

$$
2 \frac{r_{E}-r_{W}}{r_{E}+r_{W}} \equiv \frac{\Delta r}{<r>}
$$

- Since Δr is small, this dominates the error
- Neglect error on average rate (of order 1\%)

Then

$$
\begin{aligned}
\sigma(A) & \approx \sigma(\Delta r) /<r> \\
& =\sqrt{\sigma\left(r_{E}\right)^{2}+\sigma\left(r_{w}\right)^{2}}
\end{aligned}
$$

Results

Run	Duration [s]	SN09 facing	counts SN09	counts SN36
1	$2 \mathrm{hr00m}$	E	1672	1448
2	0 h 55 m	W	759	675
3	2 h 40 m	W	2412	2312
4	1 h 29 m	E	1284	1257

Total measurement time: about 7 hrs
Total facing E: $1672+675+2312+1284=5943$
Total facing W: $1448+759+2412+1257=5876$
$r_{E}=0.2336 \pm 0.003 \mathrm{~Hz}$
$r_{w}=0.2309 \pm 0.003 \mathrm{~Hz}$

Results

$r_{E}=0.2336 \pm 0.003 \mathrm{~Hz}$
$r_{w}=0.2309 \pm 0.003 \mathrm{~Hz}$
$\Delta r=2.6 \mathrm{mHz} \pm 4.2 \mathrm{mHz}$
So, for the final result:

$$
A=0.011 \pm 0.018
$$

Too bad :(

Bonus: correcting for background rate

- We assumed that we were measuring only signal
- Background coincidence rate r_{0} e.g. random coincidences, coincidences from extended showers

$$
\begin{aligned}
A_{\text {true }} & =\frac{\left(r_{E}-r_{0}\right)-\left(r_{W}-r_{0}\right)}{\left(r_{E}-r_{0}\right)+\left(r_{W}-r_{0}\right)} \\
& =\frac{r_{E}-r_{W}}{\left.r_{E}+r_{W}-2 r_{0}\right)} \\
& =\frac{r_{E}+r_{W}}{r_{E}+r_{W}-2 r_{0}} \times A_{\text {measured }}
\end{aligned}
$$

Our r_{0} is about 0.067 Hz (from calibration measurement) and $r_{E} \approx r_{W}=0.21 \mathrm{~Hz}$.
\Rightarrow Correction factor of about 1.5 (still not significant)

