Measurement

- Two independent units: SN09 and SN36
- ► Four measurement in total, exchanging direction East/West.
- Now come the nitty gritty details...

Error Calculation

Error on rate

- Measure number of events N in time $t \Rightarrow \text{rate } r \equiv N/t$
- Error on time measurement is negligible
- Error on number of events is likely Poisson $1/\sqrt{N}$

イロト イポト イヨト イヨト

• Total error on rate is $\sigma(r) = r/\sqrt{N}$

Error Calculation

Error on rate difference

- We have two rates, one facing East, one facing West
- Total error on rate difference is just sum-of-squares of individual errors

$$\Delta r \equiv r_E - r_W$$

$$\sigma(\Delta r) = \sqrt{\sigma(r_E)^2 + \sigma(r_W)^2}$$

Error Calculation

Define East-West asymmetry A as

$$2\frac{r_E - r_W}{r_E + r_W} \equiv \frac{\Delta r}{\langle r \rangle}$$

• Since Δr is small, this dominates the error

▶ Neglect error on average rate (of order 1%)

Then

$$\sigma(A) \approx \sigma(\Delta r) / \langle r \rangle$$
$$= \sqrt{\sigma(r_E)^2 + \sigma(r_W)^2}$$

< □ > < 同 > <

Results

Run	Duration [s]	SN09 facing	counts SN09	counts SN36
1	2hr00m	E	1672	1448
2	0h55m	W	759	675
3	2h40m	W	2412	2312
4	1h29m	E	1284	1257

イロト イポト イヨト イヨト

Total measurement time: about 7 hrs Total facing E: 1672 + 675 + 2312 + 1284 = 5943Total facing W: 1448 + 759 + 2412 + 1257 = 5876 $r_E = 0.2336 \pm 0.003$ Hz $r_W = 0.2309 \pm 0.003$ Hz

Results

$$\begin{split} r_E &= 0.2336 \pm 0.003 \text{ Hz} \\ r_W &= 0.2309 \pm 0.003 \text{ Hz} \\ \Delta r &= 2.6 \text{ mHz} \pm 4.2 \text{ mHz} \\ \text{So, for the final result:} \end{split}$$

$A = 0.011 \pm 0.018$

Too bad :(

(4日) (個) (音) (音) (音) (つ)

Bonus: correcting for background rate

- We assumed that we were measuring only signal
- Background coincidence rate r₀
 e.g. random coincidences, coincidences from extended showers

$$A_{\text{true}} = \frac{(r_E - r_0) - (r_W - r_0)}{(r_E - r_0) + (r_W - r_0)}$$

= $\frac{r_E - r_W}{r_E + r_W - 2r_0}$
= $\frac{r_E + r_W}{r_E + r_W - 2r_0} \times A_{\text{measured}}$

Our r_0 is about 0.067 Hz (from calibration measurement) and $r_E \approx r_W = 0.21$ Hz. \Rightarrow Correction factor of about 1.5 (still not significant)