Supernova remnants as cosmic ray accelerators

Jacco Vink

Nikhef
Topical Lectures, March 2015

The Cosmic Ray Spectrum

Cosmic Ray Spectra of Various Experiments

Voyager 1 result

Fig. 1. Overview of energetic particle observations at V1, 2012.35 to 2013.40, showing the contrary behavior of GCRs and lower-energy particles. (A) Hourly averages of GCR activity and the pronounced boundary crossing on 25 August 2012 (day 238). GCR error bars are $\pm 1\sigma$. (B) Intensities of low- to medium-energy ions and low-energy electrons. The time evolution is very different, depending on energy and species.

The Cosmic Ray Spectrum

- Composition (S. de Jong)
- Note electrons make up about 1% of cosmic rays
- Near power law spectrum but a few features:
 - Knee (3x10¹⁵eV): change in composition (protons → heavier elements)
 - Ankle (3x10¹⁵eV): change to extra-galactic cosmic rays?
 - Cut-off (5x10¹⁹eV): GZK cut-off? Maximum energy in extra-galactic sources?

From Novae to Supernovae

Walther Baade (1893 - 1960)

Frits Zwicky (1898-1974)

In addition, the new problem of developing a more detailed picture of the

happenings in a super-nova now confronts us. With all reserve we advance the view that a super-nova represents the transition of an ordinary star into a *neutron star*, consisting mainly of neutrons. Such a star may

possess a very small radius and an extremely high density. As neutrons

can be packed much more closely that "gravitational packing" energy in a clarge, and, under certain circumstan nuclear packing fractions. A neutron most stable configuration of matter a hypothesis will be developed in another some observations that tend to suppor mainly of neutrons.

COSMIC RAYS FROM SUPER-NOVAE

By W. BAADE AND F. ZWICKY

Mount Wilson Observatory, Carnegie Institution of Washington and California Institute of Technology, Pasadena

Communicated March 19, 1934

Supernovae

- Two basic classes of supernovae:
 - Core collapse supernovae (types II, Ib, Ic, ..):
 - Collapse of core of massive star (M>8 M_{sun})
 - Formation of neutron star
 - Energy from gravitational collapse (10⁵³ erg)
 - Most energy in neutrinos
 - -≈10⁵¹ erg explosion energy
 - Thermonuclear supernovae (Type Ia)
 - Disruption of C/O white dwarf
 - Energy from nuclear fusion (e.g. C/O \rightarrow ⁵⁶Ni)
 - Explosion energy=total energy ≈ 10⁵¹ erg

Supernova remnants

- Supernova explosion ejects material with V≈2000-20000 km/s
- Ejecta create a shock wave in interstellar medium
- Shock wave heats gas to 10⁶·10⁸ K, creating a hot expanding shell
- Hot shell sends also shock wave into cold supernova ejecta (reverse shock)
- Hot shell emit X-ray emission
- X-ray spectra shows material from supernova
- Mass of shell grows from few M_{sun} to 500 M_{sun}
- Shell=supernova remnant exists for 20,000-100,000 yr

Why are supernova remnants prime candidates for origin of *Galactic* cosmic rays?

- Energy requirements for a steady CR population in Milky Ways:
 - Energy density in cosmic rays in Milky Way: u_{cr} ≈ 1 eV/cm³
 - Around 1 GeV: CRs remain for ≈10⁷ yr in Galaxy
 - Volume Galaxy: $V_{gal} = \pi R_{disk}^{2}(2z) \approx 3x10^{11} pc^{3} \approx 10^{67} cm^{3}$
 - Power needed: L=u_{cr}V_{gal}/t_{cr}=5x10⁴⁰ erg/s
- Power provide by supernovae
 - 2-3 supernovae per galaxy per century
 - Energy per SN: 10⁵¹ erg
 - SN power: $L_{SN}=10^{51}/t_{SN}=6\times10^{41}$ erg/s

SNe provide enough power for cosmic rays if efficiency is 5-20%!

The origin of Galactic cosmic rays

In order for SNRs to be the source of Galactic cosmic rays, two criteria need to be satisfied:

- 1. SNRs should put 5-20% ($\approx 10^{50}$ erg) of kinetic energy in cosmic rays
 - → when do they do this, early, young, or Sedov stage?
 - → should collective effects be considered (super bubbles?)
- 2.SNRs should be able to accelerate particles to $>3 \times 10^{15} \text{eV}$
 - → where are the Galactic Pevatrons?

Early evidence for particle acceleration by SNRs

- Development of radio astronomy (1950-1960): SNRs are radio synchrotron sources
- Since 1960ies: SNe sources of energy, but acceleration inSNR stage
- Important source: Cas A
- Important: radio synchrotron radiation→ electrons of at least ≈ 1-10 GeV
 - What about protons, and what about the cosmic ray knee?

Diffusive shock acceleration (Fermi acceleration)

- Particles scatter elastically (B-field turbulence)
- Each shock crossing the particle increases its momentum with a fixed fraction ($\Delta p = \beta p$)
- Net movement downstream (particles swept away from shock):
 - After each cycle, less particles make it to next cycle
- Resulting spectrum:

$$dN/dE = C E^{-(1+3/(X-1))}$$

with X shock compression ratio, $X=4 \rightarrow dN/dE = C E^{-2}$

Axford et al., Blanford & Ostriker, Krymsky, and Bell (all 1977-78) Review: Malkov & Drury 2001

First order Fermi acceleration

- Particles elastically scatter on either side of the shock
 - scattering centers: turbulent magnetic fields
- Particles going from upstream to downstream appear to have some excess momentum, but also the other way around: $\Delta v v_1-v_2=(1-1/X)v_1=3/4V_s$
- Lorentz transformation (with $\Delta v=3/4V_s$): $E=\gamma_{\Delta v}\left(E'+p'\Delta v\cos\theta\right)$

- Non-relativistic shock/rel. particle: $\gamma \approx 1, \, p = E/c.$ $\frac{\Delta E}{E} \approx \frac{\Delta v}{c} \overline{\cos \theta} = \frac{\frac{3}{4} V_{\rm s}}{c} \overline{\cos \theta} \equiv \alpha$
- After n full shock crossings (exponential growth):

$$E = E_0(1 + 2\alpha)^n$$

Expected particle spectrum

- There are two competing processes:
 - 1.recrossing shock: gaining energy
 - 2.particles are swept downstream → away from shock front
- Assume isotropic cosmic ray distribution
 - Number rate of particles crossing shock: ¼ncrc
- Number rate of particles escaping downstream: 1/Xn_{cr}V_s=1/4n_{cr}V_s
 - $P_{escape}=(1/4n_{cr}V_s)/(1/4n_{cr}c)$, so survival $P_{surv}=1-P_{esc}=1-V_s/c$
 - So after n cycles (exponential growth energy, exp. decay in survival)

$$E = E_0(1+2\alpha)^n, \ N = N_0(1-V_s/c)^n$$
$$n = \ln(E/E_0)/\ln(1+2\alpha) = \ln(N/N_0)/\ln(1-V_s/c)$$

Some manipulation (ln (1+x)≈1/x):

$$N = N_0 \left(\frac{E}{E_0}\right)^{-1}, dN(E)/dE \propto E^{-2}$$

- Taking into account shock compression X: $dN/dE = C E^{-(1+3/(X-1))}$
- Hence: power law slope spectrum q=(1+3/(X-1))=2 for X=4!!

Acceleration time

- Upstream the particles diffuse ahead of the shock
 - They form a shock-precursor
- How long before being swept up by shock?
 - Diffusion length scale:

$$l_{\rm shock} = V_{\rm s} \Delta t_1 = \sqrt{2D_1 \Delta t_1} = l_{\rm diff}$$

- Time scale:
- Hence

 $\Delta t_1 = \frac{2D_1}{V_s^2}$ $l_{\text{diff}} = \frac{2D_1}{V_s^2}$

• Diffusion coefficient:

- $l_{\text{diff}} = \frac{2D_1}{V_{\text{s}}}$ $D = \eta \lambda_{\text{mfp}} \frac{1}{3}c = \eta \frac{cE}{3eB}$
- η =fudge parameter: B-field turbulence
- Downstream:

$$\Delta t_2 = \frac{2D_2}{\left(1 - \frac{1}{\chi}\right)V_{\rm s}^2} \approx \frac{2D_2}{\frac{3}{4}V_{\rm s}^2}$$

During one cycle gain is

$$\frac{\Delta p}{p} \propto \frac{V_s}{c}$$

Combining:

$$t_{\rm acc} = \frac{3}{v_1 - v_2} \int_{p_1}^{p_2} \left(\frac{D_1}{v_1} + \frac{D_2}{v_2} \right) \frac{dp}{p}$$

• Last decade in energy takes longest time (large diffusion coefficient)

Signatures of efficient acceleration

- What could be the signatures of efficient acceleration?
 - Shock structure changes: cosmic ray precursor, gas pre-heating/slowing down
- Efficient acceleration results in non-linear shock structures:
 - Precursor region + heating
 - Lower post-shock plasma temperatures
 - Higher shock compression ratios

Results of simple Rankine-Hugoniot extensions

Vink+ '10, Vink&Yamazaki '14

Shocks in solar system: Fermi acceleration caught in the act!

CME induced shock (ACE, Giaccalone '12)

Solar system termination shock (Voyager 2, Florinski+ 09)

Can SNRs accelerate up to the knee?

The maximum energy of cosmic rays accelerated by supernova shocks

P. O. Lagage and C. J. Cesarsky

Service d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, Bât. 28, F-91191 Gif-sur-Yvette Cedex, France

Received February 28, accepted April 11, 1983

Summary. The aim of this paper is $E_{\rm max}$ that particles subjected to acceleration can acquire during remnant. The rate of acceleration coefficient, which is determined by energy present at a scale comparat

1983:

Thus supernova shock acceleration cannot account for the observed spectrum of galactic cosmic rays in the whole energy range 1-10⁶ GeV/n.

We study the variations of the dimusion coefficient as a function of momentum, space, and time.

In the most optimistic case, the diffusion mean free path is everywhere comparable to the particle Larmor radius; then $E_{\rm max} \sim 10^5$ GeV/n. Considering a more realistic behaviour of the diffusion coefficient, we obtain $E_{\rm max} \lesssim 10^4$ GeV/n. Thus, supernova shock acceleration cannot account for the observed spectrum of galactic cosmic rays in the whole energy range 1–10⁶ GeV/n.

Key words: cosmic-ray acceleration – shock waves – hydromagnetic waves

The X-ray revolution

Chandra (NASA, 1999)

XMM-Newton (ESA, 1999)

Suzaku (JAXA, 2005)

- Modern X-ray telescopes in Space:
 - High resolution imaging (especially Chandra: 0.5")
 - CCD detecors that detect the energy of the photons → imaging spectroscopy
 - Also grating spectrometers for $E/\Delta E \approx 1000$

X-ray spectra of supernova remnants

- Core collapse SNRs are rich in O, Ne, Mg
- Core collapse SNR appear irregular
- Type Ia SNRs are iron-rich
- Type Ia SNRs appear more regular/structured

Discovery of X-ray synchrotron emission

- In 1995 ASCA X-ray satellite: X-ray synchrotron emission from SN 1006 (Koyama et al. 1995)
- What determines the maximum synchrotron photon energy?
 - time available for accelerating electrons
 - acceleration gains = synchrotron (+IC) losses
 - electrons escape above certain energy

- → age limited spectrum
- → loss limited spectrum
- → escape limited spectrum

Loss-limited X-ray synchrotron spectra

Synchrotron loss-time

$$\tau_{\text{syn}} = \frac{E}{dE/dt} = 12.5 \left(\frac{E}{100 \text{ TeV}}\right)^{-1} \left(\frac{B_{\text{eff}}}{100 \mu \text{G}}\right)^{-2} \text{ yr.}$$

• Diffusive acceleration time (depends on diffusion coeff. D, compression X)

$$\tau_{\rm acc} \approx 1.83 \frac{D_2}{V_{\rm s}^2} \frac{3\chi^2}{\chi - 1} = 124 \eta B_{-4}^{-1} \left(\frac{V_{\rm s}}{5000 \,\,\mathrm{km}\,\mathrm{s}^{-1}} \right)^{-2} \left(\frac{E}{100 \,\mathrm{TeV}} \right) \frac{\chi_4^2}{\chi_4 - \frac{1}{4}} \,\,\mathrm{yr}.$$

• Equating gives expected cut-off for loss-limited case (e.g. Aharonian&Atoyan '99)

$$h\nu_{\text{cut-off}} = 1.4\eta^{-1} \left(\frac{\chi_4 - \frac{1}{4}}{\chi_4^2}\right) \left(\frac{V_s}{5000 \text{ km s}^{-1}}\right)^2 \text{ keV}$$

- NB loss limited case:
 - frequency cut-off independent of B!!
 - Strongly dependent on V_s

All young (100-1000 yr) SNRs show X-ray synchrotron radiation

Implications of X-ray synchrotron emission

Acceleration must proceed close to Bohm-diffusion limit!

$$\eta \lesssim 10$$

- The higher the B-field →faster acceleration, but for electrons: E_{max} lower!
- For B=10-100 μG: presence of 10¹³-10¹⁴ eV electrons
- Loss times are:

$$\tau_{\rm syn} = \frac{E}{dE/dt} = 12.5 \left(\frac{E}{100 \text{ TeV}}\right)^{-1} \left(\frac{B_{\rm eff}}{100 \mu \text{G}}\right)^{-2} \text{ yr.}$$

X-ray synchrotron emission tells us that

- electrons can be accelerated fast
- that acceleration is still ongoing (loss times 10-100 yr)
- that particles can be accelerated at least up to 10¹⁴ eV

Beautiful Tycho's supernova remnant (SN1572)

Narrowness of X-ray synchrotron filaments

Chandra

SN1572

- In many cases X-ray synchrotron filaments appear very narrow (1-4")
- Including deprojections implies l≈10¹⁷cm

Narrowness X-ray synchrotron filaments: high B-fields

•Width≈diffusion length ≈ advection length:

$$B_2 \approx 26 \left(\frac{l_{\text{adv}}}{1.0 \times 10^{18} \text{cm}}\right)^{-2/3} \eta^{1/3} \left(\chi_4 - \frac{1}{4}\right)^{-1/3} \mu \text{G}$$

- •Cas A/Tycho/Kepler: 100-500 µG (e.g. Vink&Laming '03, Völk et al. 03, Bamba+ '04, Warren+ '05, Parizot+ '06)
- •High B ⇒fast acceleration ⇒ protons beyond 10¹⁵eV?
 - High B-field likely induced by cosmic rays (e.g. Bell '04)
 - High B-fields are a signature of efficient acceleration
 - Optimistic scenario of Lagage & Cesarky seems to be realistic!

Magnetic field amplification

- Clear correlation between ρ , V and B
- In rough agreement with predictions (e.g. Bell 2004)
- Relation may even extend to supernovae (B² ρVs³ ?)
 (Völk et al. '05, Vink '08)
- ullet SNRs: little dynamic range in V_s

CR Knee can be reached when SNRs very young?

The coming of age of Gamma-ray observatories: Cherenkov Telescope (TeV) and the Fermi and Agile satellites (GeV)

- Gamma-ray photons give more direct proof of high energy particles:
 - E_{photons} ≈ 10% E_{particles}
- Gamma-rays can provide direct proof for accelerated ions (hadronic cosmic rays)

Imaging Cherenkov Telescope Arrays

Future VHE gamma-ray detector: Cherenkov Telescope Array (CTA)

- Southern and Northern array foreseen
- Southern array: Namibia or Chili
- Detection principle: image Cherenkov shower induced by gamma-photon
- Mix of three types of telescopes: about 70 small-, 20 medium-, 4 large-sized

Gamma-ray radiation processes

Some young SNRs in TeV gamma-rays

Gamma-rays detected: but are these leptons or hadrons?

- Debates on the nature of most TeV SNRs
- Most heated: RXJ1713 and Vela Jr
- Heated debates on gamma-ray emission
 - pion decay:requires high densities/high B-fields

Adding Fermi: case solved?

- Fermi detected RX J1713 in GeV range
- Caveat: Galactic plane contamination
- Spectral shape suggests inverse Compton origin of GeV/TeV emission
- Has controversy ended?
 - IC models do not fit very well TeV-end of spectrum
 - Hadronic model does not follow initial predictions
 - Hadronic model may still be valid with more complicated scenarios: e.g. dense clumps in empty cavity (Inoue+ 2013, Gabici&Aharonian '14)

Clear evidence for hadronic emission from mature SNRs

- EGRET: tentative evidence for SNR/mol. cloud associations (Esposito+ '96)
- Fermi + AGILE: many GeV detections!!
- Most prominent sources: SNRs interacting with molecular clouds
 - Examples: W44, W28, IC443
- Spectral shapes (W44/IC443):
 - Pion decay (Guiliani+ 11, Ackerman)
 - Cut-off energies 10¹⁰-10¹¹ GeV
 - Suggests highest energy CRs escaped

W44, Guiliani+ '11 (AGILE)

Fermi detection of pion bumps

Conclusion:

Mature SNRs contain accelerated protons

But are past their prime concerning acceleration to high energies!

Where have the high energy protons gone?

Molecular clouds interacting with cosmic rays near SNR: W28, a case of early CR escape

- Mature SNRs in general not TeV sources
- Perhaps surprising if TeV is hadronic and no cosmic-ray escape!
- The TeV detections of mature SNRs are SNRs/ molecular cloud associations!
- Interesting example: W28, offset between SNR and TeV source(s)
- General conclusion: highest energy (hadronic) cosmic rays seem to have escaped lighting up molecular clouds nearby

W28 region

colors: CO

contours: TeV

Are collective effects important: from supernova shell to super shell

- Super shells: collected by many stars and supernovae
- Up to now: little evidence for acceleration in super shells
- Last decade some progress:
 - Lack of energy inside DEML192 (Cooper+ 04)
 - -2/3 of energy in cosmic rays?
 - TeV Y-rays from Westerlund 1 and 2 OB associations (H.E.S.S. + 11/12)
 - -Uncertainty about the source, OB cluster or individual sources?
 - -Line of sight effects?
 - X-ray synchrotron emission from 30DorC (Bamba+ 04)

X-ray synchrotron emission from 30Dor C

- X-ray imaging spectroscopy: northwest spectrum non-thermal Bamba+ 04, Yamaguchi+ 09, Kavanagh+ '14
- Shell is large R=47 pc
- How X-ray synchrotron possible: need V_s>3000 km/s?
 Much higher than typical SB shells (10 km/s)
 - Solution Yamaguchi+: a SNR not a super bubble

H.E.S.S. detection of the superbubble 30Dor C

- additional emission SW of PWN
 - 130 pc at 50 kpc
- >5 σ above spill-over
- two-source morphology favoured at 8.8σ

- shell of superbubble 30 Dor C
- star clusters of LH 90
- note: angular resolution does not allow conclusion on morphology

H.E.S.S. detection of the superbubble 30Dor C

- power-law spectrum (183 h acceptance corrected exposure)
- spectral index 2.6 ± 0.2
- $\Phi(1 \text{ TeV}) = (1.6\pm0.4) \times 10\text{-}13 \text{ cm}^{-2}\text{s}^{-1}\text{TeV}^{-1}$
- $L_{1-10 \text{ TeV}}(50 \text{ kpc}) = (9 \pm 2) 10^{34} \text{ erg/s}$
- corrected for N 157B spill-over

Interpretation TeV Y-ray emission 30DorC

• hadronic scenario

- energy in protons
- $W_{pp} = (0.7 25) \times 10^{52} (n_H/cm^{-3})^{-1} erg$
- even for 5 supernova explosions high density needed: n_H > 20 cm⁻³
- thermal X-rays indicate low density: $n_H \sim 0.4$ cm⁻³ Bamba+ 04, Kavanagh+ '14

leptonic scenario

- low magnetic field: ~15 μG
- 4 x 10⁴⁸ erg in electrons

Are super bubbles the main source of Galactic cosmic rays? Remaining issues.

- Collective effects?
 - $f_{cr}(superbubble) > N_{snr} f_{cr}(SNR)$?
 - Observational evidence to look for:
 - highest energies! → could be searched for
 - overall efficiency → difficult to assess
- 30Dor C proof that super bubbles are the main sources of cosmic rays?
 - Perhaps exceptional
 - Many SNRs seen in gamma-rays, just a few/one super bubble(s)
 But: lack of super bubbles may be observational bias (low densities)
- If super bubbles extend CR to beyond $> 3 \times 10^{15}$ eV:
 - why is the cosmic ray spectrum a smooth power law up to 3x 10¹⁵ eV?
 - -Young SNRs accelerate up to 10¹⁴eV
 - -Not all SNRs are in super bubbles (what fraction is?)
 - -Type Ia SNRs also fast accelerators (SN1006, Tycho!)
 - → expect several features associated with difference sources/environments

Summary and conclusions

- For SNRs to be the sources of Galactic cosmic rays:
 - 5-10% of explosion energy in cosmic rays
 - acceleration of protons beyond the knee
- No full proof (yet) that SNRs satisfy criteria:
 - No Galactic PeVatrons known!
- But a lot of progress made:
 - X-ray synchrotron emission young SNRs
 - → Acceleration electrons beyond 10 TeV
 - → Requires turbulent magnetic field η< 10
 - → Narrow rims → high B-fields → fast acceleration
 - TeV Gamma-rays
 - → >10 TeV particles present
 - → Debate over nature emission (inverse Compton vs Pion decay)
 - GeV gamma-rays
 - → few clear cases for pion decay → protons accelerated
 - → mature SNRs: cut-off around 10 GeV
 - → Spectrum affected by cosmic ray escape: acceleration early on
 - Not discussed: Cosmic-ray acceleration efficiency
 - → Optical emission: hints for ≈25% acceleration efficiency