

Transport of Cosmic Rays Propagation of cosmic rays in our Galaxy

Jörg R. Hörandel Radboud University Nijmegen & Nikhef

http://particle.astro.ru.nl

Transport equation for cosmic rays in the Galaxy

diffusion

Transport equation for cosmic rays in the Galaxy

Acceleration of particles in supernova remnant

SN R RX J1713.7-3946 H.E.S.S.: TeV-Gamma rays ASCA: X-rays (keV)

Acceleration of particles in supernova remnant

1st order Fermi acceleration at strong shock

a) rest system of unshocked ISM ISM

c) rest system of shock front

3/4 Us

rest system of unshocked ISM

b)

d) rest system of shocked ISM

energy gain

 $\frac{\Delta E}{E} \propto \frac{U_s}{c}$

 $N(E) dE \propto E^{-2} dE$

power law with spectral index -2.0 ... -2.1

Bell, Blanford, Ostriker (1978)

Supernova remnant (SNR) Cassiopeia A

H.E.S.S. supernova remnant RXJ 1713

Transport equation for cosmic rays in the Galaxy

diffusion of gales
remove wall -> diffusion

$$\frac{A m}{A t} = -D \cdot \overline{A} \cdot \frac{dS}{dx} \int dmsity$$

mass flow farea gradient
per unit time diffusion
 $coefficient$
 $\left(\frac{cm^2}{s}\right]$

Current dusity
$$j = \frac{\Delta m}{A \cdot \Delta t} \cdot \frac{NA}{M}$$

particle number density $n = \frac{g \cdot NA}{M}$
 $= j = -D \frac{du}{dx}$

(2)
$$\frac{1}{j} = -D$$
 graden 1^{st} law of Fick
(2) $\frac{3n}{2t} + \operatorname{div} \vec{j} = 0$ conversion of the number of particles

$$(1 + (1) =) \frac{\partial n_i}{\partial t} = - \operatorname{div}(-D \nabla n_i) \operatorname{div} \vec{A} = \nabla \vec{A}$$

$$= \nabla (D \nabla n_i) \quad 2^{ud} \text{law of Fick}$$

Transport equation for cosmic rays in the Galaxy

specific energy loss Bethe Bloch formula

Figure 27.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for $\beta \gamma \gtrsim 1000$, and at lower momenta for muons in higher-Z absorbers. See Fig. 27.21.

Leaky Box Model

simple approach, replace diffusion term

 $au_e\,$ residence time of cosmic rays in Galaxy

assume all Be isotopes are produced through spallation

for stable isotopes:

$$-\frac{N_i}{\tau_e(i)} + C_i - \frac{N_i}{\tau_{spal}(i)} = 0$$

for radioactive isotopes:

$$-\frac{N_j}{\tau_e(j)} + C_j - \frac{N_j}{\tau_{spal}(j)} - \frac{N_j}{\tau_r(j)} = 0.$$

we assume

$$\tau_{spal} >> \tau_e \quad \tau_{spal} >> \tau_r$$

Leaky Box Model "age" of cosmic rays

the ratio of the two beryllium isotopes ⁹Be (stable) and ¹⁰Be (radioactive) in cosmic rays is given as

Chart of nuclides

16											S 26	S 27	S 28	S 29	S 30
											D 25	P 26	D 27	D 28	P 20
15											0.0368s	0.0437s	0.26s	0.2703s	4.142s
14									Si 22	Si 23	Si 24	Si 25	Si 26	Si 27	Si 28
14									0.029s	0.0423s	0.14s	0.22s	2.234s	4.16s	92.2297
13									Al 21	Al 22	Al 23	Al 24	Al 25	Al 26	Al 27
15									0.0428s	0.0911s	0.446s	2.053 s	7.183 s	7.17e+05y	100
12								Mg 19	Mg 20	Mg 21	Mg 22	Mg 23	Mg 24	Mg 25	Mg 26
								4e-12s	0.0908s	0.122s	3.8/5s	11.32s	78.99	10	11.01
11								Na 18 0.0347s	Na 19 0.435	Na 20	Na 21 22.49s	Na 22	Na 23	Na 24	Na 25
							Ne 16	Ne 17	Ne 18	Ne 10	Ne 20	2.005 y	Ne 22	Ne 23	Ne 24
10							INC IO	0.1092s	1.666s	17.22s	90.48	0.27	9.25	37.24s	3.38m
0							F 15	F 16	F 17	F 18	F 19	F 20	F 21	F 22	F 23
9							0.14s	1e-19s	1.075m	1.83h	100	11.16s	4.158s	4.23s	2.23s
8					O 12	O 13	O 14	O 15	O 16	O 17	O 18	O 19	O 20	O 21	O 22
						0.00858s	1.177m	2.037m	99.757	0.038	0.205	26.88s	13.51s	3.42s	2.25s
7					N 11	N 12	N 13	N 14	N 15	N 16	N 17	N 18	N 19	N 20	N 21
		I	<i>a</i> .		0.09s	0.011s	9.965m	99.632	0.368	7.13s	4.173s	0.619s	0.271s	0.13 s	0.095s
6			C 8	C 9	C 10	C II 20.20m	C 12	C 13	C 14	C 15	C 10	C 17	C 18	C 19	C 20
		l		0.1200s	19.51s	20.59m	98.95 D 11	D 12	5700y	2.449s	0.747s	0.1958	0.092s	0.0498	0.014s
5				D 0 0.77s	D 9 8 5e-19s	Б IU 19.9	В 11 80.1	D 12 0.0202s	D 15 0.01736s	0.0125s	D 15 0.0105s		D 17 0.00508s		D 19 0.00292s
				Be 7	Be 8	Be 9	Be 10	Be 11	Be 12	0.01200	Be 14		01002000		01002720
4				53.22d	6.7e-17s	100	1.51e+06y	13.81s	0.0213s		0.00484s				
2				Li 6	Li 7	Li 8	Li 9		Li 11						
5	_			7.59	92.41	0.8399s	0.1783s		0.0087s						
2		He 3	He 4		He 6		He 8								
_		0.000137	99.9999		0.8067s		0.1191s								
1	H 1 99.9885	H 2 0.0115	H 3 12.32y												
0		n 1													

"Age" of galactic cosmic rays

THE AGE OF THE GALACTIC COSMIC RAYS DERIVED FROM THE ABUNDANCE OF ¹⁰Be*

M. GARCIA-MUNOZ, G. M. MASON, AND J. A. SIMPSON[†] Enrico Fermi Institute, University of Chicago Received 1977 March 14; accepted 1977 April 21

FIG. 1.—Cross section of the IMP-7 and IMP-8 telescopes. D1, D2, and D3 are lithium-drifted silicon detectors of thickness 750, 1450, and 800 μ m, respectively. D4 is an 11.5 g cm⁻² thick CsI (T1) scintillator viewed by four photodiodes. D5 is a sapphire scintillator/Cerenkov radiator of thickness 3.98 g cm⁻², and D6 is a plastic scintillation guard counter viewed by a photomultiplier tube. Asterisks denote detectors whose output is pulse-height analyzed. **Residence time in Galaxy**

$^{10}\text{Be} \rightarrow ^{10}\text{B} + \text{e}^{-}$ (τ =2.4 10⁶ a)

τ = 15*10⁶ a

THE ASTROPHYSICAL JOURNAL, 217:859-877, 1977 November 1 © 1977. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Advanced Composition Explorer (ACE)

NASA / Goddard Space Flight Center; Start: 25.8.97, 9 wissensch. Instrumente (156 kg) ; 90% duty cycle $| \le Z \le 28$; 1 keV $\le E \le 600 \text{ A} \cdot \text{MeV}$

CRIS: The Cosmic Ray Isotope Spectrometer

MEASUREMENT OF THE SECONDARY RADIONUCLIDES ¹⁰Be, ²⁶Al, ³⁶Cl, ⁵⁴Mn, AND ¹⁴C AND IMPLICATIONS FOR THE GALACTIC COSMIC-RAY AGE

FIG. 2.—Mass histograms for Be ($\langle E \rangle = 107$ MeV nucleon⁻¹), Al ($\langle E \rangle = 212$ MeV nucleon⁻¹), Cl ($\langle E \rangle = 250$ MeV nucleon⁻¹), and Mn ($\langle E \rangle = 289$ MeV nucleon⁻¹). The maximum allowed zenith angles for these data are $\theta_{max} < 40^{\circ}$ for Be and Al and $\theta_{max} < 30^{\circ}$ for Cl and Mn. The overlying curves for Al, Cl, and Mn were obtained using maximum-likelihood fits, as discussed in the text. A 10 × magnification of the Be, Al, and Cl counts scale is shown as a light histogram and fitted curve. The total number of events in the histograms are 6552 for Be, 10967 for Al, 1196 for Cl, and 2954 for Mn.

MEASUREMENT OF THE SECONDARY RADIONUCLIDES ¹⁰Be, ²⁶Al, ³⁶Cl, ⁵⁴Mn, AND ¹⁴C AND IMPLICATIONS FOR THE GALACTIC COSMIC-RAY AGE

FIG. 8.—Confinement times obtained by CRIS and previous experiments. Data shown are from the references listed in the caption of Fig. 7. Uncertainties shown with solid error bars are 1 standard deviation statistical. The average value of the confinement time, $\tau_{esc} = 15.0 \pm 1.6$ Myr, indicated by the CRIS data for these four clock isotopes is shown as a hatched band. The dashed lines running through the CRIS data represent the uncertainty introduced from the combined systematic uncertainties shown in Table 5. The data point plotted for the *Ulysses* ⁵⁴Mn confinement time is based on the recalculation by Connell et al. (1998) using the ⁵⁴Mn decay half-life of $T_{1/2}$ ⁽⁵⁴Mn) = 0.63 Myr from Wuosmaa et al. (1998). Using the half-life of $T_{1/2}$ ⁽⁵⁴Mn) = 0.68 Myr assumed in this study raises the confinement time from *Ulysses* by ~1.5 Myr.

Leaky Box Model pathlength in Galaxy

consider stable nuclei only (no decay)

$$\frac{N_i}{\tau_e(i)} = \sum_{j>i} \frac{p_{ij}}{\tau_j} N_j - \frac{N_i}{\tau_{spal}(i)} + Q_i$$

Transition Radiation Array for Cosmic Energetic Rays

1600 proportional tubes total

Transition Radiation Array for Cosmic Energetic Radiation

Direct measurement of the composition of cosmic rays from 0.5 to 10,000 GeV/amu with single elemental resolution

Combined responses for energy measurements over 4 decades:

all signals scale with Z²

 10^{5}

 10^{4}

1 0³

 10^{2}

5m² sr - currently the largest cosmic-ray detector on balloons

TRACER Experiment

TRACER Experiment - Mc Murdo, Antarctica flight: 12. – 26. December 2003 ~ 40 km (3-5 g/cm²)

Leaky-Box Propagation Parameters

► Continuity equation:

$$N_i(E) = \frac{1}{\Lambda_{esc}(E)^{-1} + \Lambda_i^{-1}} \times \left(\frac{Q_i(E)}{\beta c \rho} + \sum_{k>i} \frac{N_k}{\lambda_{k\to i}}\right)$$

► Source Spectrum:

$$Q_i(E) = n_i \cdot E^{-\alpha}$$

Spallation Path Length:

► Escape Path Length:

$$\Lambda_{esc}(E) = CE^{-\delta} + oldsymbol{\Lambda_0}$$

$$\Lambda_i = \frac{m}{\sigma(A)}$$

Boron to Carbon ratio

$$\frac{N_B}{N_C} = \frac{\lambda_{\rightarrow B}^{-1}}{\Lambda_{esc}(E)^{-1} + \Lambda_B^{-1}}$$

A. Obermeier et al., ICRC 2011

spallation cross sections measured at accelerators

Figure 2 $-{}^{10}_B$ production crosssection in carbon spallation by protons.

Solid circles are from this work. Triangles are from Davids et al. (1970) (mass 10 measurements below the threshold for ¹⁰Be production) and squares from Lindstrom et al. (1975).

Figure 3 - ¹¹B production cross-section in carbon spallation by protons. Solid circles are from this work. Triangles are from Davids et al. (1970), Crosses from Roche et al. (1976), and squares from Lindstrom et al. (1975).

TRACER: propage ion of cosmic rav ;

escape path length [g/cm²] path length of cosmic rays in carbon 10 Galaxy iron Leaky Box model **10⁻¹ 10² 10³ 10**⁴ 10 kinetic Energy [GeV/amu] $\frac{26.7\beta}{(\beta R)^{\delta} + (0.714 \cdot \beta R)^{-1.4}} + \Lambda_0 \text{ g/cm}^2,$ $\Lambda(R) =$

A. Obermeier et al., ApJ 752 (2012) 69

The Source Spectrum

- ► Fit to TRACER oxygen data.
- ► $\delta = 0.64$, $\Lambda_0 = 0.7 \text{ g/cm}^2$

- Free parameter: α .
- ► Source spectrum: power law.

Result

- Agrees with previous results.
- Model predicts spectrum at Earth may not be a power law (Λ₀).

A. Obermeier et al., ApJ 752 (2012) 69

Cosmic-ray propagation

Radius of particle in magnetic field

$$r = \frac{p}{ZeB}$$

r[pc]=1.08*E[PeV]/B[µG]

Pathlength vs. interaction length

pathlength in Galaxy

$$\lambda_{esc} = 5 - 10 \text{ g/cm}^2$$

interaction length

nuclear radius

cross section

ISM: protons

interaction length

$$r = r_0 A^{1/3} \qquad r_0 = 1.3 \cdot 10^{-13} \text{ cm}$$

$$\sigma_{p-A} = \pi (r_p + r_0 A^{1/3})^2$$

$$n = 1/\text{cm}^3 \quad \rho = 1.67 \cdot 10^{-24} \text{ g/cm}^3$$

$$\lambda_{p-A} = \frac{\rho}{\sigma_{p-A} \cdot n}$$

$$\lambda_{p-p} = 21 \text{ g/cm}^2$$

$$\lambda_{p-Fe} = 1.6 \text{ g/cm}^2$$

Shape of energy spectrum

energy

Particle Data Book

Extensive air showers – Mass

Simple Heitler model of (hadronic) showers

Primary mass:

KArlsruhe Shower Core and Array DEtector

Two dimensional shower size spectrum Ig N_e vs. Ig N_{μ}

KASCADE: Energy spectra for elemental groups

A knee-like structure in the spectrum of the heavy component of cosmic rays

Cosmic-ray energy spectrum

according to JRH, Astropart. Phys. 19 (2003) 193

Origin of the knee?

Staney ...

Swordy

Lagutin ...

Roulet ..

Kobayakawa ...

Völk & Zirakashvili

Sveshnikova

Berezhko & Ksenofontov

JRH, Astropart. Phys. 21 (2004) 241 (updated)

Acceleration (SNR)

- .. in SNR
- .. in SNR + radio galaxies
- .. in oblique shocks .. in variety of SNR Single source model Reacceleration in galactic wind

Leakage from Galaxy

Minimum pathlength model Anomalous diffusion model Hall diffusion model Diffusion in turbulent magnetic fields Diffusion and drift

γ-ray bursts

Cannonball model	Plaga
Acceleration in GRB + diffusion	Wick
Acceleration in GRB E _{max} ~A	Dar

Interaction with background particles

Diffusion model + photo-disintegration Tkaczyk Interaction with neutrinos in galactic halo Dova ... Photo-disintegration (optical and UV photons) Candia ...

Particle physics in atmosphere

Gravitons, SUSY

Kazanas & Nicolaidis

F

dN/dE

~ A

The re-acceleration model

S. Thoudam, ECRS 2014, Kiel

Results: Protons, Helium & Iron spectra

FIGURE 9. Energy spectrum of the cosmic-ray iron group. Experimental data as in Fig. 6. The lines indicate spectra for models explaining the knee as an effect of the propagation process according to Hörandel & Kalmykov et al. [43] (—), Ogio et al. [44] (---), Roulet et al. [45] (···), as well as Völk et al. [46] (-··-).

JRH, AIP Conf. Proc 1516 (2013) 185

Transport of Cosmic Rays Propagation of cosmic rays in our Galaxy

thank you!

questions?

Jörg R. Hörandel Radboud University Nijmegen & Nikhef

http://particle.astro.ru.nl