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Introduction to Neutron Stars
Time Evolution Equations

f -mode frequency in full GR

What’s inside a neutron star?
Asteroseismology

Neutron Stars — laboratories for matter under extreme conditions

Illustration: Gaertig, Kokkotas (2019)
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What’s inside a neutron star?

Neutron stars are the final stage of the lives of massive stars
(M ≳ 8M⊙).

About 1.4 − 2.0 solar masses are compressed into a ball of radius
r ≈ 11 − 14 km.

Density reaches more than 1015g/cm3, several times that of an
atomic nucleus.

Matter is described by an equation of state (EOS).
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What’s inside a neutron star?

Read et al. (2009)

EOS is a function p = p(ρ).

While the low density EOS is
well constrained, it has large
uncertainties at high densities
(in the NS core, ρ ≳ ρnuc).

Numerous EOS have been
proposed.

Various models (variational
method, Hartree-Fock, RMF, ...),
various particles (npeµ, π, K ,
quarks, ...),
phase transition, ...
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Özel, Freire (2016)

EOS is typically visualised via
the resulting M-R curve for
NSs.

Some EOS are already ruled out
by observation:

2M⊙ NS,

Tidal deformability in binary

mergers,

NICER observations, ...
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The Question

How can we probe the interior of an NS

and learn about the EOS?

Here: Seismology
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Helioseismology

Seismology extremely successful in
the sun
→ Helioseismology.

Thousands of individual oscillation
modes observed → detailed
knowledge of the Sun’s internal
structure.
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Asteroseismology

NS oscillations are extremely difficult to observe.
via gravitational waves,
perhaps in magnetar flares or by modulation of other e/m signals,
via impact on dynamic system, e.g., binary inspirals.

For the moment
calculate frequencies based on proposed models,
unveil patterns and universal relations.
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Neutron Star Oscillations - Formulating the Problem

Einstein equations

Gµν = 8πTµν

and (implied) conservation of energy-momentum

∇µT
µν = 0

General metric for a rotating neutron star

ds2 = −e2νdt2 + e2ψr2 sin2 θ (dϕ− ωdt)2 + e2µ (dr2 + r2dθ2)
(as used by the rns-code (Friedman & Stergioulas (1995)))

Neutron star matter modelled as perfect fluid

Tµν = (ρ+ p)uµuν + pgµν

These equations need to be solved – but it’s quite complicated...
C J Krüger, K D Kokkotas 9 / 28
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Perturbation Equations

Simplification I

Assume that the star is “almost” in equilibrium.

Employ first order perturbation theory, i.e. write every quantity as
“background + perturbation”:

X = X̄ + δX

Then throw away all terms that are quadratic (or higher) in the
perturbations.

→ Required numerical methods are a lot easier and computational costs
are incomparably lower!
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Perturbation Equations

Simplification II

Most general form of the equations:

∂Q
∂t

= Ar
∂Q
∂r

+ Aθ
∂Q
∂θ

+ Aϕ
∂Q
∂ϕ

+ AQ

Q is a vector containing all evolved perturbation quantities and the
A, Ar , Aθ and Aϕ are coefficient matrices that depend on the
background quantities only.
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Perturbation Equations

Simplification II

Assume axisymmetry:

Q(t, r , θ, ϕ) = Q̃(t, r , θ)e imϕ

This removes the azimuthal derivatives from the equations:

∂

∂ϕ
→ im

Number of dimensions reduced by 1.
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Numerical Implementation

Methods for solving the hyperbolic PDEs: Method of Lines

Finite differences of 2nd order for spatial derivatives.

Runge-Kutta 3rd order for time stepping.

Use Kreiss-Oliger dissipation to stabilise time evolution.
Coefficients are of the order 10−5 to 10−7.

∂Q
∂t

= Ar
∂Q
∂r

+ Aθ
∂Q
∂θ

+ imAϕQ+ AQ+ α∇2Q

Derivatives of Kreiss-Oliger term are evaluated on grid coordinates
rather than physical coordinates.
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Time Evolution of Perturbation Equations

Perturbed (linearised) Einstein Equations
& Conservation of Energy-Momentum

δGµν = 8πδTµν ,
δ (∇νT

µν) = 0,

with the typical metric perturbations

gµν = g0
µν + hµν .

Metric perturbations require choice of gauge:
Choose the Hilbert Gauge:

∇µhµν = 0.

→ 10 coupled wave equations for the metric components.
C J Krüger, K D Kokkotas 14 / 28
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Numerical Implementation

Choosing a Grid

Characteristic speed of the neutron star fluid is the speed of sound cs .
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A uniform grid enforces a small time step at the center of the star (due to
the CFL criterion).
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Numerical Implementation

Choosing a Grid

Employ grid (roughly) according to speed of sound:

(Left: grid used in rns-code. Right: grid used in (Cowling) time evolution.)

→ Time step ∆t can be 10-20 times (or more) larger!

Side effects:
→ Kreiss-Oliger coefficients can be smaller by 2 orders of magnitude.
→ Deformed surface of neutron star is better resolved.
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Numerical Implementation

Choosing a Grid

When spacetime is dynamic, the grid needs to extend up to a few hundred star radii.
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Construct grid with similar properties:

Grid lines squeezed close to surface
of star.

But with increased spacing toward
the outer edge.
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Numerical Implementation

Slicing the grid to use MPI

Productive simulation runs on 3000x50 grid
(radial × polar resolution)

Grid can easily be sliced along polar grid lines → MPI.

Only little communication between threads at slice boundaries
necessary.

All threads have very similar workload.
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Numerical Implementation

Slicing the grid to use MPI

Walltime of single-threaded simulations: ∼ 2 days.

Local cluster in Tübingen BinAC has nodes with 28 CPUs.

→ Walltime ∼ 1.5 - 2.5 hours.
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Numerical Implementation

Alternative: Multi-grid implementation

Characteristic speeds of neutron star fluid and spacetime are quite
different (cs vs c = 1).
Introduce individual grids for each “fluid”.

Neutron star fluid gets grid shown in the beginning.
Spacetime grid is almost uniform with slightly increasing spacing
toward the outer edge.

Need to interpolate between those grids at each (intermediate) time
step.
→ Time step ∆t can be chosen ∼ 5 times larger.
→ Walltime for single-threaded run now ∼ 5-6 hours.
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Characteristic example of time signal
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EoS SLy M = 2.02M⊙

ϵc = 1.2e15 g/cm3 Ω = 1.3 kHz

re/rp = 0.56 Ω/ΩK = 0.98
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The fundamental mode of a NS

The f -mode (fundamental) mode of a NS

Fundamental oscillation mode of a NS; present also in constant-density models.

Typical frequency: 1 − 3 kHz.

The quadrupolar (l = |m| = 2) f -mode is potentially a strong emitter of GWs.

Could be excited during late binary inspiral and impact the phase of the
waveform.

Spectrum of NSs is very rich and features various other modes: p-modes, w -modes,
s-modes, i-modes, ...
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f -mode frequency in the Cowling Approximation

Gaertig, Kokkotas (2008, 2011, 2011) Doneva, Gaertig, Kokkotas, Krüger (2013)
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20-40% error
in frequencies
(due to neglecting dynamics of
spacetime)
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Fitting formulae – σ/σ0 vs. Ω/σ0
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Zeeman-like
splitting of
f -mode, here
shown for
l = |m| = 2.
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f -mode “changes sign”, i.e., becomes
CFS-unstable when Ω ⪆ 3.4σ0.
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Fixed central density

Krüger, Kokkotas. PRL (2020)
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Fitting formulae – Mσ vs. Ω̂ vs η
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Non-rotating case: Lau, Leung, Lin (2010) Cowling case: Doneva, Kokkotas (2015)
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Overview of Entire (Cold) EoS H4
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Summary

Written a time evolution code from scratch to evolve perturbations of fast
rotating neutron stars in time.

Evolution equation are supposed to be contributed to the ETK at some point.

With MPI parallelisation or multi-grid approach, walltime is conveniently small
(few hours).

Determined f -mode frequency and onset of CFS-instability of rapidly rotating
NSs in full GR without approximation.

Provided asteroseismological relation for f -mode frequency.

Relevant for various astrophysical scenarios: continuous sources, inspiral +
post-merger phase in binary mergers, ...

Universal relation can be used in cheap EOS inference codes and numerous other
applications, ...
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Thank you for your
attention!

Questions?



References
Friedman & Stergioulas (1995): ApJ 444, 306 (1995)

Gaertig & Kokkotas (2008): PRD 78, 064063 (2008)

Read et al. (2009): PRD 79, 124032 (2009)

Lau, Leung & Lin (2010): ApJ 714, 1234 (2010)

Gaertig & Kokkotas (2011): PRD 83, 064031 (2011)

Gaertig et al. (2011): PRL 107, 101102 (2011)

Doneva et al. (2013): PRD 88, 044052 (2013)

Doneva & Kokkotas (2015): PRD 92, 124004 (2015)

Özel & Freire (2016): A&A 54, 401 (2016)

Gaertig & Kokkotas (2019): in Tipler et al. Physik, 8. Aufl., Springer (2019)

Krüger & Kokkotas (2020): PRL 125, 111106 (2020)

C J Krüger, K D Kokkotas 2 / 2


	Introduction to Neutron Stars
	What's inside a neutron star?
	Asteroseismology

	Time Evolution Equations
	Background + Perturbations
	Numerical Implementation
	Choosing the computational grid

	f-mode frequency in full GR
	Time signal and the various modes
	The f-mode of a neutron star
	Asteroseismological Relations

	Anhang

