

Gravitational Wave Signatures from Rotating Core Collapse Supernovae

Sophia C. Schnauck & Dr. Philipp Mösta European Einstein Toolkit Meeting 2024 July 11th 2024

1. An Overview: Core-Collapse Supernovae

- Stars with M $\geq 8M_{\odot}$ may result in CCSN
- Stellar collapse liberates gravitational energy $\sim 10^{53}$ erg (1 erg = 10⁻⁷ J)
	- \div 99% of energy is carried away by neutrinos ❖ remainder of energy powers CCSN explosion $\sim 10^{51}$ erg
- **Explosion Mechanisms:**
	- \div neutrino mechanism
	- **❖ magneto-rotational mechanism**

1. An Overview: Core-Collapse Supernovae

Initial Phase of Collapse $t \sim 0$

Bounce and Shock Formation

1. An Overview: Core-Collapse Supernovae

Shock Propagation and ν_e Burst

Shock Breakout, SN Explosion

1. Gravitational Waves

Using the gravitational wave mass-quadrupole tensor I_{ik} , we can determine $h_{+,eq}$, $h_{x,eq}$, $h_{+,p}$, and $h_{x,p}$

Sophia C. Schnauck

1. The Einstein Telescope

• Arrangement of 3 "L" shaped detectors

- Combine data to increase sensitivity to and reliability of detection
- Approximately 10 times more sensitive than second generation predecessors

• Presumed to be sensitive enough to detect CCSNe signatures

Outline

1. Introduction

2. Methods

2. Numerical Methods: Einstein Toolkit

We use the open source code from the Einstein Toolkit, in particular:

- Carpet
- **→ CarpetX driver for adaptive mesh refinement with AMReX**
- GRHydro
- è **G**eneral **R**elativistic **a**ccelerated **M**agnetohydrodynamics on AMRe**X** (GRaM-X) code
	- → Extends GRMHD capability of Einstein Toolkit to GPU-based exascale systems

2. GRaM-X: GPUs

GRaM-X features:

- Z4c formalism to evolve equations of GR
- Valencia formulation to evolve equations of GRMHD
- Analytic as well as tabulated equations of state
- TVD and WENO reconstruction methods
- HLLE Riemann solver

Dr. Swapnil Shankar et al.

Sophia C. Schnauck

Frontier Supercomputer

- Located at Oak Ridge Leadership Computing Facility in Tennessee (USA)
- 1.1 exaflops, 10¹⁸ floating point operations per second
- Made up of CPUs and GPUs

https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier

Sophia C. Schnauck

2. ZelmaniQuadWaveExtract & Post-processing

- Extracts quadrupole wave based on rest mass density and velocity
- produces first time derivative of the mass quadrupole tensor as output

GPU accelerated thorn:

• for-loops from the CPU code \rightarrow lambda functions in the GPU-accelerated version

Post-processing:

• Scripts for computation of strains, energies, and time-frequency content

2. Initial Setup

• Pre-supernova models:

Reference case: 25*M*_⊙ of solar-metallicity $\mathbf{\hat{v}}$ Ω₀ = 2.8 rad s⁻¹ **E25** $\mathbf{\hat{B}}_0 = 10^{12} \text{ G}$ Production level: 35*M*_⊙ of 10% solar-metallicity $\mathbf{\hat{O}}_0$ = 0, 1.4, 2.8 rad s⁻¹ $rotOB12$ $rot14B12$ $rot28B12$ $\mathbf{\hat{B}}_0 = 10^{12} \text{ G}$

- LS220 nuclear equation of state¹
- 9 refinement levels

Outline

- 1. Introduction
- 2. Methods
- 3. Results

3. Density Profiles and Lapse

- Entropy: indicates the thermodynamic state and disorder
- Plasma β: $\beta = P_{\text{gas}}/P_{\text{mag}}$
- Y_e : (electron fraction) info about neutrino production, and neutronization
- Bernoulli criterion (−hu_t): info about how bound matter is to the PNS

UNIVERSITY OF AMSTERDAM ×図× Anton Pannekoek Institute for Astronomy

y [km]

3. Gravitational Wave Strains

3. Gravitational Wave Strains

3. Gravitational Wave Strains

Can we detect gravitational waves from our CCSNe with the Einstein Telescope?

3. Detectability

Outline

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Conclusion

Rotation rates impact explosion dynamics and thus the GW signals significantly

4. Conclusion

4. What is next?

We want to:

- Drive the simulations to 1s post-bounce
- Vary the progenitor mass
- Run a model with $B_0 = 10^{13}$ G
- Run a models with Ω_0 =1.4, 4.2, and 5.6 rad s⁻¹
- Plot the time-frequency content of GW signals and analyze for PNS oscillations
- Implement M1 neutrino transport

Extra Slides

y [km]

 $rot14B12$

 ms

 $\frac{1}{5}$

 $\overline{\mathbf{u}}$

dq1

 \overline{ms}

∣ഥ

 $\overline{\triangleright}$

 II

 \mathbb{F}_q

 $\frac{100 \text{ ms}}{100 \text{ ms}}$

 \mathbf{I}

 $\mathfrak{t}_{\rm{pd}}^{\rm{d}}$

UNIVERSITY OF AMSTERDAM

Anton Pannekoek Institute for Astronomy

200

200

200

 $\overline{0}$

 Ω

 $\mathbf{0}$

v.区X

2. GRaM-X: Scaling Tests

Gravitational Wave Energies

UNIVERSITY OF AMSTERDAM x@x Anton Pannekoek Institute for Astronomy

Gravitational Waves

• Using the gravitational wave mass-quadrupole tensor I_{ik} , we can determine $h_{\rm *,eq}$, $h_{\rm x,eq}$, $h_{\rm *,p}$, and $h_{\rm x,p}^{-1}$

$$
h_{+,eq} = \frac{G}{c^4} (\ddot{I}_{zz} - \ddot{I}_{yy}) \qquad h_{+,p} = \frac{G}{c^4} (\ddot{I}_{xx} - \ddot{I}_{yy})
$$

$$
h_{\times,eq} = \frac{2G}{c^4} (\ddot{I}_{yz}) \qquad h_{\times,p} = \frac{-2G}{c^4} (\ddot{I}_{xy})
$$

1. Kuroda, T., Takiwaki, T., and Kotake, K., "Gravitational wave signatures from low-mode spiral instabilities in rapidly rotating supernova cores", *Physical Review D*, vol. 89, no. 4, APS, 2014.

1. Gravitational Waves

What are Gravitational Waves?

Sophia C. Schnauck

Magnetic Fields

38

Sophia C. Schnauck

Gravitational Wave Spectrogram – Radice et al. 2019

Gravitational Wave Spectrogram

UNIVERSITY OF AMSTERDAM x Anton Pannekoek Institute for Astronomy

Accretion Rates

Sophia C. Schnauck

3. PNS Evolution


```
Fate of the Remnant
```


The Einstein Telescope

- Arrangement of 3 "L" shaped detectors
- Separate low and high frequency detectors
- Idea: combine data from each detector, increasing sensitivity and thus the reliability of a detection

The Supernova "Zoo"

Magnetic Fields and Rotation Profile

- Constraints on magnetic fields from High mass stars
- No strong observational constraints, just theoretical
- Upward constraint: if field is ∼ 1016G star explodes immediately and not necessarily realistic
- Lower constraint: need at least 1012G in order to have dynamically relevant field (reverse engineered)
- Strong B-fields may be rare, but so are CCSNe