Introducing the Kadath library

Philippe Grandclément

July 9th, 2024

Laboratoire de l'Univers et Théories (LUTh) CNRS / Observatoire de Paris F-92195 Meudon, France

philippe.grandclement@obspm.fr

KADATH library

KADATH is a library that implements spectral methods in the context of theoretical physics.

- \bullet It is written in C++, making extensive use of object oriented programming.
- Versions are maintained via git.
- Website : www.kadath.obspm.fr
- The library is described in the paper : JCP 220, 3334 (2010).
- Designed to be very modular in terms of geometry and type of equations.
- LateX-like user-interface.
- More general than its predecessor LORENE.
- Well-suited for solving the initial value problem (no time evolution).

Given a set of orthogonal functions Φ_i on an interval Λ , spectral theory gives a recipe to approximate f by

$$
f \approx I_N f = \sum_{i=0}^{N} a_i \Phi_i
$$

Properties

- the Φ_i are called the basis functions.
- the a_i are the coefficients : it is the quantity stored on the computer.
- Multi-dimensional generalization is done by direct product of basis.
- \bullet The computation of the a_i comes from the Gauss quadratures.

Coefficient and configuration spaces

There exist $N+1$ point x_i in Λ such that

 $f(x_i) = I_N f(x_i)$

Two equivalent descriptions

- Formulas relate the coefficients a_i and the values $f(x_i)$.
- Complete duality between the two descriptions.
- \bullet One works in the coefficient space when the a_i are used (for instance for the computation of f').
- \bullet One works in the configuration space when the $f\left(x_i\right)$ are employed (for the computation of $\exp(f)$)

Example of interpolant for $N = 4$

blue curve $f(x) = \cos^3(\pi x/2) + (x+1)^3/8$; orange: I_4f .

Example of interpolant for $N = 8$

blue curve $f(x) = \cos^3(\pi x/2) + (x+1)^3/8$; orange: I_8f .

- For smooth functions (i.e. \mathcal{C}^{∞}), $I_N f$ converges to f (when N increases), faster than any power-law of N (typically exponentially).
- This is called spectral convergence.
- this is to be contrasted with finite difference schemes.
- One of the main reason to use spectral methods.

Spectral convergence

Multi-domain setting

Numerical coordinates

- Space is divided into several numerical domains.
- \bullet In each domain there is a link between the physical coordinates X and the numerical ones X^* .
- Spectral expansion is performed with respect to X^* .
- Non-periodic coordinates are expanded wrt to polynomials.
- Periodic coordinates (i.e. angles) are described by trigonometrical functions.

Example spherical space

Other spaces available

- Cylindrical space.
- **Bispherical space.**
- Spaces with periodic time coordinates.
- **Spaces with adaptable domains.**
- **Spaces with various symmetries.**
- Additional ones relatively easy to include.

Code 1

For a scalar field, in each domain:

- one array for the values at the collocation points.
- one array for the values of the coefficients.
- one object describing the spectral basis.
- should be transparent to the user.
- KADATH is not intended to implement complex analytic expressions.
- The space gives access to the coordinates that can be assigned to scalar fields.
- Usually the basis must be set by hand.
- Once the basis is known, additional methods are available (derivative, value at any point etc).

- A scalar field is regular if it is expressed as a sum of polynomials of Cartesian coordinates $x^m y^n z^p$.
- From that assumption one can deduce some appropriate choice of spectral basis by expressing x, y, z in terms of r, θ, φ , for instance.
- Details depend on the space considered.
- For a spherical space it leads to :
	- for φ : $\cos(m\varphi)$ and $\sin(m\varphi)$.
	- for θ : $\cos(2j\theta)$ for m even and $\sin((2j + 1)\theta)$ for m odd.
	- Chebyshev polynomials with respect to r^*
	- In the nucleus : $T_{2i} (r^*)$ for m even and $T_{2i+1} (r^*)$ for m odd.

KADATH management of the spectral basis

- For every computation, KADATH tries to assert the basis of the result.
- Straightforward for things like the product, inverse, sum etc...
- For other computations (like \exp , \cos , $\sqrt{ }$) the base cannot be directly obtained and is lost.
- **Important rule** set the base by hand if and only if it is required.
- Be careful when enforcing the standard base. For instance $\rho = \sqrt{x^2 + y^2}$ is not expanded onto the standard base.
- Most of the errors in using KADATH come from inappropriate setting of the basis.

Weighted residual method

Consider a field equation $R = 0$ (ex. $\Delta f - S = 0$). The discretization demands that

$$
(R,\xi_i)=0 \quad \forall i\leq N
$$

Properties

- \bullet $(,)$ is the same scalar product as the one used for the spectral approximation.
- the ξ_i are called the test functions.
- For the τ -method, the ξ_i are the basis functions.
- Amounts to cancel the coefficients of R .
- **Some equations are relaxed and must be replaced by appropriate** boundary and matching conditions.

The discrete system

Original system

- Unknowns : tensorial fields.
- Equations : partial derivative equations.

Discretized system

- \bullet Unknowns : coefficients \vec{u} .
- Equations : algebraic system $\vec{F}(\vec{u}) = 0$.

Properties

- For a linear system $\vec{F}\left(\vec{u}\right) = 0 \Longleftrightarrow A^i_j u^j = S^i$
- In general $\vec{F}\left(\vec{u}\right)$ is even not known analytically.
- \bullet \vec{u} is sought numerically.

Given a set of field equations with boundary and matching equations, KADATH translates it into a set of algebraic equations $\vec{F}(\vec{u}) = 0$, where \vec{u} are the unknown coefficients of the fields.

The non-linear system is solved by Newton-Raphson iteration

- Initial guess \vec{u}_0 .
- Iteration :
	- Compute $\vec{s}_i = \vec{F}(\vec{u}_i)$
	- If \vec{s}_i if small enough \implies solution.
	- Otherwise, one computes the Jacobian : $\mathbf{J}_i = \frac{\partial \bar{F}}{\partial \vec{r}_i}$ $rac{\partial \overline{u}}{\partial \overline{u}}(\overline{u}_i)$
	- One solves : $J_i \vec{x}_i = \vec{s}_i$.
	- $\vec{u}_{i+1} = \vec{u}_i \vec{x}_i$.

Convergence is very fast for good initial guesses.

Computation of the Jacobian

Explicit derivation of the Jacobian can be difficult for complicated sets of equations.

Automatic differentiation

- **Each quantity** x is supplemented by its infinitesimal variation δx .
- The dual number is defined as $\langle x, \delta x \rangle$.
- All the arithmetic is redefined on dual numbers. For instance $\langle x, \delta x \rangle \times \langle y, \delta y \rangle = \langle x \times y, x \times \delta y + \delta x \times y \rangle.$
- \bullet Consider a set of unknown \vec{u} , and a its variations $\delta \vec{u}$. When \vec{F} is applied to $\langle \vec{u}, \delta \vec{u} \rangle$, one then gets : $\left\langle \vec{F}\left(\vec{u}\right), \delta \vec{F}\left(\vec{u}\right) \right\rangle$.
- One can show that

$$
\delta \vec{F}\left(\vec{u}\right) = \mathbf{J}\left(\vec{u}\right) \times \delta \vec{u}
$$

The full Jacobian is generated column by column, by taking all the possible values for $\delta \vec{u}$, at the price of a computation roughly twice as long.

All the information needed to solve the problem are contained in the class System_of_eqs

- The region of space of interest must be passed.
- The various constants and unknowns are defined, along with the name by which they will be recognized.
- At this point the total number of unknown (i.e. the total number of coefficients) is computed.

Passing the equations

Main types of equations

- Eq inside : bulk equations, second order PDE, to be solved inside a given domain.
- Eq matching : ensures the matching of a quantity at the boundary between two domains.
- Eq bc : enforces a boundary condition at the boundary of one domain.

The equations are passed with a formalism inspired by LateX.

- Various reserved word can be used (like Lap, Sqrt...)
- If a metric is defined, it is used to manipulate indices.
- Einstein's summation on repeated indices is used.
- \bullet for consistency reasons, the equations must have the same symmetries as the unknowns.

If a metric is associated to the system, one has access to additional methods : covariant derivative D, Christoffel Γ, Riemann and Ricci tensors R etc.

No possibility to have two metrics associated to a system.

Main types of metrics:

- **Flat metrics.** In Cartesian of spherical tensorial basis.
- **Constant metrics.** It gives access to the methods but they are not considered as unknowns.
- **General metrics.** It is an unknown and the code will try to find its value.

Numerical resources

Consider N_u unknown fields, in N_d domains, with d dimensions. If the resolution is N in each dimension, the Jacobian is an $m \times m$ matrix with:

 $m \approx N_d \times N_u \times N^d$

For $N_d = 5$, $N_u = 5$, $N = 20$ and $d = 3$, one reaches $m = 200000$

Solution

- The matrix is distributed on several processors.
- Easy because the Jacobian is computed column by column.
- The library SCALAPACK is used to invert the distributed matrix.
- \bullet $d = 1$ problems : sequential.
- $d = 2$ problems : 100 processors (mesocenters).
- $d = 3$ problems : 1000 processors (national supercomputers).

Find the conformal factor Ψ of the Schwarzschild black hole in QI coordinates.

System of equations

- \bullet Bulk : $\Delta \Psi = 0$.
- Inner BC : $\Psi_{,r} + \frac{1}{2a}\Psi = 0$
- Outer BC : $\Psi = 1$

 a is the radius of the black hole and the solution is

$$
\Psi\left(r\right) = 1 + \frac{a}{r}.
$$

- Any valence and types of indices are possible.
- Tensorial basis : Cartesian, orthonormal spherical basis. For instance : $\vec{V} = (V^x(r, \theta, \varphi), V^y(r, \theta, \varphi), V^z(r, \theta, \varphi))$.
- Be careful in setting the spectral base of each components.
- Tensors can be used as constants or unknowns.
- Some expressions of the unknowns appear often in the equations (e.g. the extrinsic curvature tensor).
- Instead of explicitly replacing them by their expression, they can be made definitions.
- Definitions are computed only when the unknowns are modified.
- Definitions can also be used to do computations.
- Some unknowns are not field but global quantities (orbital velocity of a binary system for instance).
- The system must then be supplemented with some global equations (i.e. not field equations).
- Example of global equations :
	- surface integrals (at infinity, on horizons).
	- value of a field at a given point.
	- value of one coefficient of an expression.

Binary black holes in the extended thin-sandwich approach.

Geometry Bispherical coordinates, solve outside of the two spheres.

Unknowns Lapse N , conformal factor Ψ , shift vector B^i and orbital velocity $\Omega.$

Bulk equations Hamiltonian and momentum constraints, trace of the evolution equations.

Boundary conditions Apparent horizons in equilibrium and asymptotic flatness.

Equation for Ω Relativistic virial theorem : $M_{\text{Komar}} = M_{\text{ADM}}$.

The tutorials can be found on the Kadath website (https://kadath.obspm.fr). Have fun...

