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KADATH library

KADATH is a library that implements spectral methods in the

context of theoretical physics.

� It is written in C++, making extensive use of object oriented

programming.

� Versions are maintained via git.

� Website : www.kadath.obspm.fr

� The library is described in the paper : JCP 220, 3334 (2010).

� Designed to be very modular in terms of geometry and type of

equations.

� LateX-like user-interface.

� More general than its predecessor LORENE.

� Well-suited for solving the initial value problem (no time evolution).
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Concept in 1D

Given a set of orthogonal functions Φi on an interval Λ, spectral theory

gives a recipe to approximate f by

f ≈ INf =

N∑
i=0

aiΦi

Properties

� the Φi are called the basis functions.

� the ai are the coefficients : it is the quantity stored on the computer.

� Multi-dimensional generalization is done by direct product of basis.

� The computation of the ai comes from the Gauss quadratures.
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Coefficient and configuration spaces

There exist N + 1 point xi in Λ such that

f (xi) = INf (xi)

Two equivalent descriptions

� Formulas relate the coefficients ai and the values f (xi).

� Complete duality between the two descriptions.

� One works in the coefficient space when the ai are used (for

instance for the computation of f ′).

� One works in the configuration space when the f (xi) are employed

(for the computation of exp (f))
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Example of interpolant for N = 4
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Example of interpolant for N = 8
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Spectral convergence

� For smooth functions (i.e. C∞), INf converges to f (when N

increases), faster than any power-law of N (typically exponentially).

� This is called spectral convergence.

� this is to be contrasted with finite difference schemes.

� One of the main reason to use spectral methods.
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Spectral convergence
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Multi-domain setting

Numerical coordinates

� Space is divided into several numerical domains.

� In each domain there is a link between the physical coordinates X

and the numerical ones X⋆.

� Spectral expansion is performed with respect to X⋆.

� Non-periodic coordinates are expanded wrt to polynomials.

� Periodic coordinates (i.e. angles) are described by trigonometrical

functions.

Example spherical space
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Other spaces available

� Cylindrical space.

� Bispherical space.

� Spaces with periodic time coordinates.

� Spaces with adaptable domains.

� Spaces with various symmetries.

� Additional ones relatively easy to include.
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Code 1
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Scalar field management

For a scalar field, in each domain:

� one array for the values at the collocation points.

� one array for the values of the coefficients.

� one object describing the spectral basis.

� should be transparent to the user.
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Setting a scalar field

� KADATH is not intended to implement complex analytic expressions.

� The space gives access to the coordinates that can be assigned to

scalar fields.

� Usually the basis must be set by hand.

� Once the basis is known, additional methods are available

(derivative, value at any point etc).
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Code 2
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The standard spectral base

� A scalar field is regular if it is expressed as a sum of polynomials of

Cartesian coordinates xmynzp.

� From that assumption one can deduce some appropriate choice of

spectral basis by expressing x, y, z in terms of r, θ, φ, for instance.

� Details depend on the space considered.

� For a spherical space it leads to :

� for φ : cos (mφ) and sin (mφ).

� for θ : cos (2jθ) for m even and sin ((2j + 1) θ) for m odd.

� Chebyshev polynomials with respect to r⋆

� In the nucleus : T2i (r
⋆) for m even and T2i+1 (r

⋆) for m odd.

15



KADATH management of the spectral basis

� For every computation, KADATH tries to assert the basis of the result.

� Straightforward for things like the product, inverse, sum etc...

� For other computations (like exp, cos,
√
) the base cannot be

directly obtained and is lost.

� Important rule set the base by hand if and only if it is required.

� Be careful when enforcing the standard base. For instance

ρ =
√
x2 + y2 is not expanded onto the standard base.

� Most of the errors in using KADATH come from inappropriate setting

of the basis.
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Code 3

17



Weighted residual method

Consider a field equation R = 0 (ex. ∆f − S = 0). The discretization

demands that

(R, ξi) = 0 ∀i ≤ N

Properties

� (, ) is the same scalar product as the one used for the spectral

approximation.

� the ξi are called the test functions.

� For the τ -method, the ξi are the basis functions.

� Amounts to cancel the coefficients of R.

� Some equations are relaxed and must be replaced by appropriate

boundary and matching conditions.
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The discrete system

Original system

� Unknowns : tensorial fields.

� Equations : partial derivative equations.

Discretized system

� Unknowns : coefficients u⃗.

� Equations : algebraic system F⃗ (u⃗) = 0.

Properties

� For a linear system F⃗ (u⃗) = 0 ⇐⇒ Ai
ju

j = Si

� In general F⃗ (u⃗) is even not known analytically.

� u⃗ is sought numerically.
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Newton-Raphson iteration

Given a set of field equations with boundary and matching equations,

KADATH translates it into a set of algebraic equations F⃗ (u⃗) = 0, where u⃗

are the unknown coefficients of the fields.

The non-linear system is solved by Newton-Raphson iteration

� Initial guess u⃗0.

� Iteration :

� Compute s⃗i = F⃗ (u⃗i)

� If s⃗i if small enough =⇒ solution.

� Otherwise, one computes the Jacobian : Ji =
∂F⃗

∂u⃗
(u⃗i)

� One solves : Jix⃗i = s⃗i.

� u⃗i+1 = u⃗i − x⃗i.

Convergence is very fast for good initial guesses.
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Computation of the Jacobian

Explicit derivation of the Jacobian can be difficult for complicated sets of

equations.

Automatic differentiation

� Each quantity x is supplemented by its infinitesimal variation δx.

� The dual number is defined as ⟨x, δx⟩.
� All the arithmetic is redefined on dual numbers. For instance

⟨x, δx⟩ × ⟨y, δy⟩ = ⟨x× y, x× δy + δx× y⟩.
� Consider a set of unknown u⃗, and a its variations δu⃗. When F⃗ is

applied to ⟨u⃗, δu⃗⟩, one then gets :
〈
F⃗ (u⃗) , δF⃗ (u⃗)

〉
.

� One can show that

δF⃗ (u⃗) = J (u⃗)× δu⃗

The full Jacobian is generated column by column, by taking all the

possible values for δu⃗, at the price of a computation roughly twice as

long.
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Defining the system

All the information needed to solve the problem are contained in

the class System of eqs

� The region of space of interest must be passed.

� The various constants and unknowns are defined, along with the

name by which they will be recognized.

� At this point the total number of unknown (i.e. the total number of

coefficients) is computed.
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Passing the equations

Main types of equations

� Eq inside : bulk equations, second order PDE, to be solved inside

a given domain.

� Eq matching : ensures the matching of a quantity at the boundary

between two domains.

� Eq bc : enforces a boundary condition at the boundary of one

domain.

The equations are passed with a formalism inspired by LateX.

� Various reserved word can be used (like Lap, Sqrt...)

� If a metric is defined, it is used to manipulate indices.

� Einstein’s summation on repeated indices is used.

� for consistency reasons, the equations must have the same

symmetries as the unknowns.
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Different types of metric

If a metric is associated to the system, one has access to additional

methods : covariant derivative D, Christoffel Γ, Riemann and Ricci

tensors R etc...

No possibility to have two metrics associated to a system.

Main types of metrics:

� Flat metrics. In Cartesian of spherical tensorial basis.

� Constant metrics. It gives access to the methods but they are not

considered as unknowns.

� General metrics. It is an unknown and the code will try to find its

value.
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Numerical resources

Consider Nu unknown fields, in Nd domains, with d dimensions. If the

resolution is N in each dimension, the Jacobian is an m×m matrix with:

m ≈ Nd ×Nu ×Nd

For Nd = 5, Nu = 5, N = 20 and d = 3, one reaches m = 200 000

Solution

� The matrix is distributed on several processors.

� Easy because the Jacobian is computed column by column.

� The library SCALAPACK is used to invert the distributed matrix.

� d = 1 problems : sequential.

� d = 2 problems : 100 processors (mesocenters).

� d = 3 problems : 1000 processors (national supercomputers).
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A test problem

Find the conformal factor Ψ of the Schwarzschild black hole in QI

coordinates.

System of equations

� Bulk : ∆Ψ = 0.

� Inner BC : Ψ,r +
1
2aΨ = 0

� Outer BC : Ψ = 1

a is the radius of the black hole and the solution is

Ψ(r) = 1 +
a

r
.
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Code 4
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Advanced topics : tensors

� Any valence and types of indices are possible.

� Tensorial basis : Cartesian, orthonormal spherical basis.

For instance : V⃗ = (V x (r, θ, φ) , V y (r, θ, φ) , V z (r, θ, φ)) .

� Be careful in setting the spectral base of each components.

� Tensors can be used as constants or unknowns.
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Advanced topics : definitions

� Some expressions of the unknowns appear often in the equations

(e.g. the extrinsic curvature tensor).

� Instead of explicitly replacing them by their expression, they can be

made definitions.

� Definitions are computed only when the unknowns are modified.

� Definitions can also be used to do computations.
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Advanced topics : global unknowns

� Some unknowns are not field but global quantities (orbital velocity

of a binary system for instance).

� The system must then be supplemented with some global equations

(i.e. not field equations).

� Example of global equations :

� surface integrals (at infinity, on horizons).

� value of a field at a given point.

� value of one coefficient of an expression.
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A complicated case

Binary black holes in the extended thin-sandwich approach.

Geometry
Bispherical coordinates, solve outside of the two spheres.

Unknowns
Lapse N , conformal factor Ψ, shift vector Bi and orbital velocity Ω.

Bulk equations
Hamiltonian and momentum constraints, trace of the evolution equations.

Boundary conditions
Apparent horizons in equilibrium and asymptotic flatness.

Equation for Ω
Relativistic virial theorem : MKomar = MADM.
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Code 5
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Try it...

The tutorials can be found on the Kadath website

(https://kadath.obspm.fr). Have fun...
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