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Huge thanks to Bruno Giacomazzo and Peter Diener for their talks.

Contents:

→ Don't forget the details: EoS and numerical simulations.

→ Numerical vs physical resistivity: MIRK methods for the RRMHD equations.

→ Adding more ingredients: MIRK methods for the neutrino transport 
equations (M1 scheme) in supernovae simulations.

→ Numerical resolution of elliptic equations: at least for initial data.
→ Your hyperbolic sector has (gravitational) waves: RK methods and stability.

→ Black hole singularities in your numerical grid.

And everything is coupled...



  

[Toni Font et al.]



  



  



  

→ Could this shift in the frequency be explained by a different reason?
→ Could the anomalous dynamics be triggered by a non-convex EoS?

Non-convexity of isentropes in the p-rho plane: compressive rarefaction waves and 
expansive shocks. Classical fluid dynamics, the convexity is determined by the 
fundamental derivative:

Bethe (1942), Zel'dovich (1946) and Thompson (1971) (BZT) fluids exhibit negative values 
for the fundamental derivative.

Relativistic fluids [Ibáñez, Cordero-Carrión et al. (2013)]: extension to the relativistic case, 
introducing the relativistic fundamental derivative:



  

EoS broadly used in 
numerical simulations of 
CCSN and BNS mergers 
display regions where 
adiabatic index is not 
monotonic → non-convex 
regions.

Good news: you can use 
standard numerical 
methods.

Illustrative example: effect 
on BNS mergers with a 
phenomenological 
toy-model EoS



  

Significant shifts in frequency observed for 
f2 mode: as large as ~500 Hz for some 
choice of toy-model EoS parameters.

Do these findings hold for realistic EoS?

This is not really the end of the story 
[Ibáñez, Cordero-Carrión et al. (2015)]: 
the relativistic fundamental derivative has 
corrections due to the presence of intense 
magnetic fiels.



  

Also, take care about the treatment of thermal effects in postmerger 
BNS merger with hybrid EoS vs tabulated EoS:



  

MIRK methods for the RRMHD equations

·· Magnetic fields are key in accretion disks, AGN, relativistic jets, compact objects.

·· A consistent treatment is necessary to avoid numerical resistivity. 

·· Hyperbolic equations + constraints (divergence of magnetic and electric fields) → 
augmented system of hyperbolic equations [Komissarov 2007] (velocity, density, electric 
and magnetic fields, two additional scalar equations). 

·· Structure of the equations:

·· Avoid numerical instabilities due to stiff source term  in the evolution equation for the 
electric field for high conductivities.



  

MIRK methods for the RRMHD equations

·· PIRK methods to deal with wave-like equations (electric and magnetic fields) 
for low-order methods.
[I. C.-C. and P. Cerdá-Durán, arXiv:1211.5930 (2012)]
[I. C.-C. and P. Cerdá-Durán, SEMA SIMAI Springer Series Vol. 4 (2014)]

                               linearization:

                               wave-like eq.:

·· Ideal limit: infinite conductivity and 

·· Implicit / Semi-implicit methods include additional recoveries of primitive variables 
from conserved ones [Palenzuela et al. 2009] → potential convergence problems, 
additional computational cost.



  

MIRK methods for the RRMHD equations

·· First-order MIRK method (stability criteria to select coefficients):

→ Pure explicit method with an effective time step:

·· Analogous derivation for the two-stage second-order MIRK method.



  

MIRK methods for the RRMHD equations

·· Applications: Self-similar current sheet: 1D problem; CFL=0.8; initial data at t=1:

Stable simulations with zero and non-zero velocities (            ), 
first and second-order methods.



  

MIRK methods for the RRMHD equations

·· Applications: Circular Polarized Alfvén waves: 1D; full system (including matter); 
EoS for an ideal fluid,             ;                            ; CFL=0.3 → 0.7;             ; KO term;

Stable simulations, with first and 
second-order methods.

Exact solution refers to 
the one in the stiff limit 
(close enough for very 
high conductivities).



  

MIRK methods for the M1 neutrino transport equations

·· The explosion mechanism of CCSNe cannot be understood without a detailed 
account of the generation and transport of neutrinos.

·· Boltzmann equation (7D problem) → momentum-space integration of the distribution 
function. Truncation: n=0 or diffusion; n=1, quite used – M1 scheme.

·· Optically thick regime → very different timescales of different interactions and stiff 
source term for very high opacities.

·· Structure of the equations:

·· IMEX-like method [Just et al. 2015]. Complexity of applying IMEX methods: opacities, 
equilibrium profile.



  

MIRK methods for the M1 neutrino transport equations

·· Similar derivation of MIRK methods, taking into account stability and limit at the stiff 
limit: effective time-step when written similar to explicit methods.

→ First-order:

→ Second-order:

Opt 1) Second order at the stiff limit for smooth variables:     

                      (similar for b').

Opt 2) Guarantee of stiff limit even if non-smooth variables:  

                                                                       (similar for a').

(similar expressions for F)



  

MIRK methods for the M1 neutrino transport equations

·· Applications: Simple test: test 1 from [J.A. Pons, J.M. Ibáñez, J.A. Miralles, MNRAS 
317, 550-562 (2000)]:

   Difussion limit (P = p E = E/3) in spherical symmetry (1D problem) and             :

    Analytical solution, c=1 (geometrical units):

                                                                            , 



  

MIRK methods for the M1 neutrino transport equations

·· Applications: Simple test:
MIRK1: a=b=0.  MIRK2: a=b=1/2, a'=(a-1)/2, b'=(b-1)/2. Similar results.

CFL=1.

Exact solution used 
at boundary 
conditions and initial 
data at t=1.



  

MIRK methods for the M1 neutrino transport equations

·· Applications: 
Core-collapse 
simulation with all 
the important 
interactions that 
dominate the 
dynamics (see 
more details in 
arXiv reference).



  

→ Stable and accurate results using 1st and 2nd MIRK methods vs reference.
→ Direct relation between the values of the coefficients and stability + correct values at 
the stiff limit (non-smooth variables).
→ Slight modifications from pure explicit methods and similar computational cost, 
independently of the complexity of opacities and equilibrium profile.

MIRK methods for the M1 neutrino transport equations

·· Applications: Core-collapse simulation:

General idea MIRK methods: Hyperbolic equations with stiff source terms that can be 
somehow linearized with respect to the conserved (evolved) variables:

Only the conserved variables are evaluated implicitly. More examples: GR force-free 
electrodynamics, rarefied gases problems, shallow water equations with friction...



  

CFC (Conformally Flat Condition) Isenberg 1979/2008, Wilson and Mathews 1989: 
conformally flat spatial 3-metric; gravitational radiation encoded in the neglected 
terms.
· Exact in spherical symmetry (CC 2011). Very accurate for axisymmetric rotating 
NSs.
· Set of elliptic equations for the metric variables (including the constraint 
equations): lapse, shift, conformal factor.
· Shares similar structure with XCTS, used in generation of initial data.
· Original formulation suffers from a non-local uniqueness pathology at extreme 
curvature or very high density regimes. This problem is solved with the introduction 
of auxiliary variables [Cordero-Carrión et al., 2009]. See talk in Einstein toolkit 
meeting 2019.

Constrained evolution schemes: SOLVE the evolution and constraint 
equations on each spatial hypersurface: CFC, FCF...



  

FCF (Fully Constrained Formulation) Bonazzola et al., 2004:
· Maximal slicing and Dirac generalized gauge.
· Similar elliptic system as in CFC with additional source terms + hyperbolic new 
sector encoding the GW radiation.

Elliptic equations are more stable but difficult to solve and parallelize:
· Initial data talk by P. Grandclément → spectral methods with Lorene library, 
commonly used.
· Chevishev-Jacobi methods (CJM) (Adsuara et al. 2017): parallelization is 
possible.

Hyperbolic equations: PIRK methods developed for the hyperbolic FCF sector and 
afterwards applied to other (free evolution) formulations (BSSN).

Coupled with matter content...



  

        Black hole singularities: infinite quantities cannot be treated numerically

→ Remap somehow your space-time: punture method commonly used in free evolution schemes 
(BSSN) and BBH simulations.

→ Excise a topological sphere from your numerical grid 
containing the black hole singularity:

· Pretorius 2005 simulations used GHG and excision.

· Excision can be combined with the CFC formulation 
[Cordero-Carrión et al., 2014].

This idea with a small modification 
has been recently used in core-collapse 
simulations [B. Sykes et al., 2023].

    More ideas are about to come 
    in the 1D case.

    More research is needed in 
    the 2D / 3D cases.
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