Numerical methods in General Relativity (and possible other theories of gravity...)

European Einstein Toolkit Meeting 2024

Isabel Cordero-Carrión University of Valencia (Spain)

MOJJVIRGO

Huge thanks to Bruno Giacomazzo and Peter Diener for their talks.

Contents:

 \rightarrow Don't forget the details: EoS and numerical simulations.

 \rightarrow Numerical vs physical resistivity: MIRK methods for the RRMHD equations.

 \rightarrow Adding more ingredients: MIRK methods for the neutrino transport equations (M1 scheme) in supernovae simulations.

 \rightarrow Numerical resolution of elliptic equations: at least for initial data.

 \rightarrow Your hyperbolic sector has (gravitational) waves: RK methods and stability.

 \rightarrow Black hole singularities in your numerical grid.

And everything is **coupled**...

GW signal divided in three distinct phases: inspiral, merger, postmerger oscillations Stergioulas+ (2011) 0.2 -22 total pre-merger post-merger -22 0.1 aLIGO -23 $h(\theta) f^{1/2} [\text{Hz}^{-1/2}]$ $h.$ [r/M_{sun}] -24 ET -24 -0.1 Shen 1.35-1.35 -24 @100 Mpc -25 -0.2 $\overline{2}$ 3 10 15 20 25 $f(kHz)$ t (ms)

Triplet of frequencies identified in GW spectrum.

Future GW observations may extract $f_2 \& f_0$ GW **asteroseismology** with post-merger remnant to constrain the EOS.

 $f_{\text{peak}}=f_2$ fundamental $l=m=2$ f-mode oscillation $f_{-} = f_{2} - f_{0}$ quasilinear $f_+ = f_2 + f_0$ combination tones

[Toni Font et al.]

Constraining the EoS

Bauswein+ (2012): peak frequency of (1.35-1.35)M_o BNS merger correlates with the radius of a 1.6M_o nonrotating NS in an EoS-independent manner.

Similar relations found for other binary masses and other radii ($R_{1,35}$ or $R_{1,8}$)

A potential measurement of fpeak from postmerger signal can be used to obtain an estimate on $R_{1.6}$, a quantity that can be used to directly constrain the EoS.

The smaller the scatter (<200 m) the smaller the error in radius measurement.

BNS mergers with hadron-quark phase transitions

Bauswein+ (2019) identified an observable imprint of a first-order hadron-quark PT at supranuclear densities on the GW emission of BNS mergers.

Dominant postmerger GW frequency f_{peak} may exhibit a significant deviation from an empirical relation between fpeak and tidal deformability if a first-order PT leads to the formation of a stable extended quark matter core in the postmerger remnant.

(Bauswein+ 2019)

EoS from Wroclaw group (Fischer+ 2018, Bastian+ 2018)

- \rightarrow Could this shift in the frequency be explained by a different reason?
- \rightarrow Could the anomalous dynamics be triggered by a non-convex EoS?

Non-convexity of isentropes in the p-rho plane: compressive rarefaction waves and expansive shocks. Classical fluid dynamics, the convexity is determined by the fundamental derivative:

$$
\mathcal{G}_{(C)} \equiv -\frac{1}{2} V \frac{\frac{\partial^2 p}{\partial V^2}}{\frac{\partial p}{\partial V}} \qquad \mathcal{G}_{(C)} = 1 + \frac{\partial \log c_s}{\partial \log \rho} = \frac{1}{2} \left(1 + \Gamma_1 + \frac{\partial \log \Gamma_1}{\partial \log \rho} \right)
$$

(all derivatives computed at constant entropy)

adiabatic index. Characterizes stiffness of EoS at a given density, showing a local Γ_1 maximum above nuclear matter density.

Bethe (1942), Zel'dovich (1946) and Thompson (1971) (BZT) fluids exhibit negative values for the fundamental derivative.

Relativistic fluids [Ibáñez, Cordero-Carrión et al. (2013)]: extension to the relativistic case, introducing the relativistic fundamental derivative:

$$
\mathcal{G}_{(\mathrm{R})} = \mathcal{G}_{(\mathrm{C})} - \frac{3}{2} c_{\mathrm{s}_{(\mathrm{R})}}^2
$$

EoS broadly used in

numerical simulations of CCSN and BNS mergers display regions where adiabatic index is not monotonic \rightarrow non-convex regions.

Good news: you can use standard numerical methods.

Illustrative example: effect on BNS mergers with a phenomenological toy-model EoS

This is not really the end of the story [Ibáñez, Cordero-Carrión et al. (2015)]: the relativistic fundamental derivative has corrections due to the presence of intense magnetic fiels.

where

$$
F := \frac{3}{2} W_s^{-4} \left(\frac{c_a^2 / a_s^2 - R}{1 - R} \right).
$$

In the previous expressions, $R := \frac{B^2}{\varepsilon a^2}$, and $c_a^2 := \frac{b^2}{\varepsilon}$

Also, take care about the treatment of thermal effects in postmerger BNS merger with hybrid EoS vs tabulated EoS:

- ·· Magnetic fields are key in accretion disks, AGN, relativistic jets, compact objects.
- $\cdot\cdot$ A consistent treatment is necessary to avoid numerical resistivity.
- $\cdot\cdot$ Hyperbolic equations + constraints (divergence of magnetic and electric fields) \rightarrow augmented system of hyperbolic equations [Komissarov 2007] (velocity, density, electric and magnetic fields, two additional scalar equations).
- Structure of the equations: $\partial_t E^j = S^j_{\rm E} \sigma W [E^j + (\nu \times B)^j (\nu_l E^l) \nu^j] = \tilde{S}^j_{\rm E}$,

$$
\partial_t B^j = S^j_B
$$

$$
\partial_t Y\,=\,S_Y,
$$

 $\cdot\cdot$ Avoid numerical instabilities due to stiff source term in the evolution equation for the electric field for high conductivities.

·· PIRK methods to deal with wave-like equations (electric and magnetic fields) for low-order methods.

[I. C.-C. and P. Cerdá-Durán, arXiv:1211.5930 (2012)]

[I. C.-C. and P. Cerdá-Durán, SEMA SIMAI Springer Series Vol. 4 (2014)]

$$
\left\{\begin{array}{ll} u_t = \mathcal{L}_1(u, v), & \text{linearization} \\ v_t = \mathcal{L}_2(u) + \mathcal{L}_3(u, v), & \text{wave-like eq.: } (\bar{\alpha}_1 - \bar{\gamma}_2)^2 + 4\bar{\alpha}_2(\bar{\gamma}_1 + \bar{\lambda}) < 0. \end{array}\right.
$$

·· Ideal limit: infinite conductivity and $E^i = -(\nu \times \mathbf{B})^i$.

·· Implicit / Semi-implicit methods include additional recoveries of primitive variables from conserved ones [Palenzuela et al. 2009] \rightarrow potential convergence problems, additional computational cost.

·· First-order MIRK method (stability criteria to select coefficients):

$$
E^j|_{n+1} = E^j|_n + \Delta t S_E^j|_n - \Delta t \overline{\sigma}|_n [c_1 E^j|_n + (1 - c_1)E^j|_{n+1} + c_2 (v \times B)^j|_n + (1 - c_2) (v|_n \times B|_{n+1})^j - c_3 v^j|_n v_l|_n E^l|_n - (1 - c_3) v^j|_n v_l|_n E^l|_{n+1},
$$

\n
$$
B^j|_{n+1} = B^j|_n + \Delta t S_B^j|_n,
$$

$$
Y|_{n+1}=Y|_n+\Delta t S_Y|_n.
$$

 \rightarrow Pure explicit method with an effective time step:

$$
E^{i}|_{n+1} = E^{i}|_{n} + \frac{\Delta t}{1 + \Delta t \overline{\sigma}|_{n}} \left[S_{E}^{i}|_{n} + \overline{\sigma}|_{n} E^{l}|_{n} \left(v^{i}|_{n} v_{l}|_{n} - \delta_{l}^{i} \right) - \overline{\sigma}|_{n} \left(v|_{n} \times B|_{n+1} \right)^{i} \right]
$$

 $\cdot\cdot$ Analogous derivation for the two-stage second-order MIRK method.

·· Applications: Self-similar current sheet: 1D problem; CFL=0.8; initial data at t=1:

$$
\mathbf{v} = (v^{\mathsf{x}}, 0, 0), \mathbf{E} = (0, 0, 0), \mathbf{B} = (0, B^{\mathsf{y}}(\mathsf{x}, t = 1), 0), \ B^{\mathsf{y}}_{e}(\mathsf{x}, t) = \text{erf}\left(\frac{\mathsf{x}}{2}\sqrt{\frac{\sigma}{t}}\right) \qquad \sigma = 10^{3}
$$

Stable simulations with zero and non-zero velocities ($v_x = 0.1$), first and second-order methods.

·· Applications: Circular Polarized Alfvén waves: 1D; full system (including matter); EoS for an ideal fluid, $\Gamma = 4/3$ $\rho(x, 0) = p(x, 0) = 1$; CFL=0.3 \rightarrow 0.7; $\sigma = 10^8$; KO term;

 $\mathbf{B}(x, 0) = B_0 (1, \cos(kx), \sin(kx)),$

with $k = 2\pi$ and $B_0 = 1.1547$, and

 $E(x, 0) = -v(x, 0) \times B(x, 0),$

with $v(x, 0) = \frac{v_A}{B_0}(0, B^y(x, 0), B^z(x, 0))$ and $v_A = 0.423695$

Stable simulations, with first and second-order methods.

Exact solution refers to the one in the stiff limit (close enough for very high conductivities).

 $\cdot\cdot$ The explosion mechanism of CCSNe cannot be understood without a detailed account of the generation and transport of neutrinos.

 $\cdot\cdot$ Boltzmann equation (7D problem) \rightarrow momentum-space integration of the distribution function. Truncation: n=0 or diffusion; n=1, quite used – M1 scheme.

 $\cdot\cdot$ Optically thick regime \rightarrow very different timescales of different interactions and stiff source term for very high opacities.

$$
\begin{aligned}\n\therefore \text{ Structure of the equations:} \qquad \partial_t E &= S_E + C^{(0)}, \qquad C^{(0)} = c \, \kappa_a (E_{\text{eq}} - \overline{E}), \\
\partial_t F^i &= S_F^i + C^{(1),i}, \quad C^{(1),i} = -c \, \kappa_{\text{tra}} \overline{F^i}.\n\end{aligned}
$$

·· IMEX-like method [Just et al. 2015]. Complexity of applying IMEX methods: opacities, equilibrium profile.

·· Similar derivation of MIRK methods, taking into account stability and limit at the stiff limit: effective time-step when written similar to explicit methods.

$$
\Rightarrow \text{First-order:} \quad E^{n+1} = E^n + \frac{\Delta t}{1 + \Delta t \, \kappa^n} \left[S_E^n + \kappa^n (E_{eq}^n - E^n) \right]
$$
\n
$$
(F^i)^{n+1} = (F^i)^n + \frac{\Delta t}{1 + \Delta t \, \kappa'^n} \left[(S_F^i)^n - \kappa'^n (F^i)^n \right]
$$
\n
$$
\Rightarrow \text{Second-order:} \quad \text{(similar expressions for F)} \quad E^{(1)} = E^n + \Delta t \left[S_E^n + a \, \kappa^n (E_{eq}^n - E^n) \right]
$$
\n
$$
\text{Opt 1) Second order at the stiff limit for smooth variables:}
$$
\n
$$
a' = \frac{a-1}{2} \quad \text{(similar for b').}
$$
\n
$$
b' = \frac{(1-b)^2}{2b}, \quad b \in (-\infty, 0) \cup (1/2, 1). \quad \text{(similar for a')} \quad E^{n+1} = \frac{1}{2} [E^{(1)} + E^n]
$$
\n
$$
+ \Delta t \left[\frac{1}{2} S_E^{(1)} + a' \, \kappa^{(1)} (E_{eq}^{(1)} - E^{(1)}) \right]
$$
\n
$$
+ \frac{1-a}{2} \kappa^{(1)} (E_{eq}^{(1)} - E^n)
$$
\n
$$
+ \left(\frac{a}{2} - a' \right) \kappa^{(1)} (E_{eq}^{(1)} - E^{n+1}) \right],
$$

 $+\left(\frac{1}{2}-a\right)K^{+}(E_{eq}-E)$

·· Applications: Simple test: test 1 from [J.A. Pons, J.M. Ibáñez, J.A. Miralles, MNRAS 317, 550-562 (2000)]:

Difussion limit (P = p E = E/3) in spherical symmetry (1D problem) and $\kappa_a = 0$.

$$
\partial_t E + \partial_r F + \frac{F}{r} = -c \kappa_{\text{a}} \left(E_{\text{eq}} - E \right)
$$

$$
\partial_t F + \partial_r P + \frac{3P - E}{r} = -c \kappa_{\text{tra}} F
$$

Analytical solution, c=1 (geometrical units):

$$
E(t,r) = \left(\frac{\kappa_{\text{tra}}}{t}\right)^{3/2} \exp\left(-\frac{3\kappa_{\text{tra}}r^2}{4t}\right) \qquad F(t,r) = \frac{r}{2t}E(t,r)
$$

·· Applications: Simple test: MIRK1: a=b=0. MIRK2: a=b=1/2, a'=(a-1)/2, b'=(b-1)/2. Similar results.

0.6302 0.7416 0.8401 0.9096 0.9516 0.6308 0.7424 0.8409 0.9102 0.9520

 \circ

 0.6

MIRK1 4.1606 1.4709 1.7560 1.9217 1.9835 4.1602 1.4704 1.7553 1.9202 1.9804 MIRK2

 0.2

120

100

80

40

20

 $\overline{0}$

 $\overline{0}$

 0.2

 0.4

ш 60

Numerical flux: Centered finite differences

 $CFL=1$.

Exact solution used at boundary conditions and initial data at t=1.

·· Applications: Core-collapse simulation with all the important interactions that dominate the dynamics (see more details in arXiv reference).

·· Applications: Core-collapse simulation:

 \rightarrow Stable and accurate results using 1st and 2nd MIRK methods vs reference.

 \rightarrow Direct relation between the values of the coefficients and stability + correct values at the stiff limit (non-smooth variables).

 \rightarrow Slight modifications from pure explicit methods and similar computational cost, independently of the complexity of opacities and equilibrium profile.

General idea MIRK methods: Hyperbolic equations with stiff source terms that can be somehow linearized with respect to the conserved (evolved) variables:

$$
\partial_t U + \partial_i F^i(U) = S(U), \qquad S(U) = S_E(U) + \frac{1}{\epsilon} [S_I(U) - U_0];
$$

$$
S_I(U) = \sum_{i=1}^n G_i(U) \overline{U^i}.
$$

Only the conserved variables are evaluated implicitly. More examples: GR force-free electrodynamics, rarefied gases problems, shallow water equations with friction...

Constrained evolution schemes: SOLVE the evolution and constraint equations on each spatial hypersurface: CFC, FCF...

CFC (Conformally Flat Condition) Isenberg 1979/2008, Wilson and Mathews 1989: conformally flat spatial 3-metric; gravitational radiation encoded in the neglected terms.

· Exact in spherical symmetry (CC 2011). Very accurate for axisymmetric rotating NSs.

· Set of elliptic equations for the metric variables (including the constraint equations): lapse, shift, conformal factor.

· Shares similar structure with XCTS, used in generation of initial data.

· Original formulation suffers from a non-local uniqueness pathology at extreme curvature or very high density regimes. This problem is solved with the introduction of auxiliary variables [Cordero-Carrión et al., 2009]. See talk in Einstein toolkit meeting 2019.

FCF (Fully Constrained Formulation) Bonazzola et al., 2004:

· Maximal slicing and Dirac generalized gauge.

· Similar elliptic system as in CFC with additional source terms + hyperbolic new sector encoding the GW radiation.

Elliptic equations are more stable but difficult to solve and parallelize:

 \cdot Initial data talk by P. Grandclément \rightarrow spectral methods with Lorene library, commonly used.

· Chevishev-Jacobi methods (CJM) (Adsuara et al. 2017): parallelization is possible.

Hyperbolic equations: PIRK methods developed for the hyperbolic FCF sector and afterwards applied to other (free evolution) formulations (BSSN).

Coupled with matter content...

Black hole singularities: infinite quantities cannot be treated numerically

 \rightarrow Remap somehow your space-time: punture method commonly used in free evolution schemes (BSSN) and BBH simulations. $1 \times 10^{+1}$

 \rightarrow Excise a topological sphere from your numerical grid containing the black hole singularity:

· Pretorius 2005 simulations used GHG and excision.

· Excision can be combined with the CFC formulation [Cordero-Carrión et al., 2014].

This idea with a small modification has been recently used in core-collapse simulations [B. Sykes et al., 2023].

 More ideas are about to come in the 1D case.

 More research is needed in the 2D / 3D cases.

