Numerical methods in General Relativity
(and possible other theories of gravity...)
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Huge thanks to Bruno Giacomazzo and Peter Diener for their talks.

Contents:

— Don't forget the details: EoS and numerical simulations.
— Numerical vs physical resistivity: MIRK methods for the RRMHD equations.

— Adding more ingredients: MIRK methods for the neutrino transport
equations (M1 scheme) in supernovae simulations.

— Numerical resolution of elliptic equations: at least for initial data.
— Your hyperbolic sector has (gravitational) waves: RK methods and stability.

— Black hole singularities in your numerical grid.

And everything is coupled...



Oscillation modes in HMNS (early postmerger)

GW signal divided in three distinct phases:

inspiral, merger, postmerger oscillations Stergioulas+ (2011)

[Toni Font et al.]
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Constraining the EoS

Bauswein+ (2012):

peak frequency of (1.35-1.35)Ms BNS merger correlates with

the radius of a 1.6Mg nonrotating NS in an EoS-independent manner.

Similar relations found for other binary masses and other radii (R1 35 or Ry s)
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estimate on R1e, a quantity that can be used to directly constrain the EoS.

The smaller the scatter (<200 m) the smaller the error in radius measurement.



BNS mergers with hadron-quark phase transitions

Bauswein+ (2019) identified an observable imprint of a first-order hadron-quark PT at
supranuclear densities on the GW emission of BNS mergers.

Dominant postmerger GW frequency fpeak may exhibit a significant deviation from an
empirical relation between fpeak and tidal deformability if a first-order PT leads to the
formation of a stable extended quark matter core in the postmerger remnant.
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— Could this shift in the frequency be explained by a different reason?
— Could the anomalous dynamics be triggered by a non-convex EoS?

Non-convexity of isentropes in the p-rho plane: compressive rarefaction waves and
expansive shocks. Classical fluid dynamics, the convexity is determined by the
fundamental derivative:
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(all derivatives computed at constant entropy)

Fl adiabatic index. Characterizes stiffness of EoS at a given density, showing a local
maximum above nuclear matter density.

Bethe (1942), Zel'dovich (1946) and Thompson (1971) (BZT) fluids exhibit negative values
for the fundamental derivative.

Relativistic fluids [Ibafiez, Cordero-Carridn et al. (2013)]: extension to the relativistic case,
introducing the relativistic fundamental derivative: 3,

Q(R) = Q(C) - E CS(R)



EoS broadly used in
numerical simulations of
CCSN and BNS mergers
display regions where
adiabatic index is not
monotonic — non-convex
regions.

Good news: you can use
standard numerical
methods.

lllustrative example: effect
on BNS mergers with a
phenomenological
toy-model EoS

Ibarez+ 2018
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Empirical universal relations affected by non-convex dynamics
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Significant shifts in frequency observed for
f2 mode: as large as ~500 Hz for some
choice of toy-model EoS parameters.

Do these findings hold for realistic E0S?
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This is not really the end of the story
[Ibanez, Cordero-Carridn et al. (2015)]:
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Mz Mg

Also, take care about the treatment of thermal effects in postmerger
BNS merger with hybrid EoS vs tabulated EoS:
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MIRK methods for the RRMHD equations

-~ Magnetic fields are key in accretion disks, AGN, relativistic jets, compact objects.

-+ A consistent treatment is necessary to avoid numerical resistivity.

- Hyperbolic equations + constraints (divergence of magnetic and electric fields) —
augmented system of hyperbolic equations [Komissarov 2007] (velocity, density, electric

and magnetic fields, two additional scalar equations).

-+ Structure of the equations: o.E/ = SJI o W[+ (v x B — (] = SJT
arY - S‘f.

- Avoid numerical instabilities due to stiff source term in the evolution equation for the
electric field for high conductivities.



MIRK methods for the RRMHD equations

- PIRK methods to deal with wave-like equations (electric and magnetic fields)
for low-order methods.

[I. C.-C. and P. Cerda-Duran, arXiv:1211.5930 (2012)]

[I. C.-C. and P. Cerda-Duran, SEMA SIMAI Springer Series Vol. 4 (2014)]

linearization | Ut = QiU+ 2V,
Uy = *‘ylu + ﬁ’gi’)‘ ‘|‘

wave-like eq.: (a1 — V2)* + 4az (71 + A) < 0.

uy = Lq(u,v),
vy = Lo(u) ﬂ Ls(u,v).

- Ideal limit; infinite conductivity and E' = —(v x B)L.

-+ Implicit / Semi-implicit methods include additional recoveries of primitive variables
from conserved ones [Palenzuela et al. 2009] — potential convergence problems,
additional computational cost.



MIRK methods for the RRMHD equations

-+ First-order MIRK method (stability criteria to select coefficients):

Ellp1 = El|n+ fﬁtsﬁn — AtT|p[C1E |n+ (1 = c1)E |np1 + 2 (v x B)jln
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— Pure explicit method with an effective time step:
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-~ Analogous derivation for the two-stage second-order MIRK method.



MIRK methods for the RRMHD equations

-~ Applications: Self-similar current sheet: 1D problem; CFL=0.8; initial data at t=1:
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Stable simulations with zero and non-zero velocities (Vx = 0.1),
first and second-order methods.



MIRK methods for the RRMHD equations

-~ Applications: Circular Polarized Alfvén waves: 1D; full system (including matter);
EoS for an ideal fluid, " = 4/3p(x,0) = p(x,0) =1; CFL=0.3 — 0.7; 0 = 10°; KO term;
B(x,0) = By (1, cos(kx),sin(kx)),
with k = 27 and By = 1.1547, and
E(x.,0) = —v(x.0) x B(x,0).
with v(x,0) = %(O, BY(x,0),B*(x,0)) and v, = 0.423695

Stable simulations, with first and
second-order methods.
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MIRK methods for the M1 neutrino transport equations

-+ The explosion mechanism of CCSNe cannot be understood without a detailed
account of the generation and transport of neutrinos.

-+ Boltzmann equation (7D problem) — momentum-space integration of the distribution
function. Truncation: n=0 or diffusion; n=1, quite used — M1 scheme.

-+ Optically thick regime — very different timescales of different interactions and stiff
source term for very high opacities.

-- Structure of the equations: 9, — 5, + ) O = ¢ gy Feq — )‘_
O F =55 + Wi W= _cpy B

-+ IMEX-like method [Just et al. 2015]. Complexity of applying IMEX methods: opacities,
equilibrium profile.



MIRK methods for the M1 neutrino transport equations

-~ Similar derivation of MIRK methods, taking into account stability and limit at the stiff
limit: effective time-step when written similar to explicit methods.

— First-order: E"!' = E"+ __Aar
| + A k"
: - At
J ik n+1 — 1% +
(F') (F)' + 5

— Second-order: (similar expressions for F)

Opt 1) Second order at the stiff limit for smooth variables:

a = a; I (similar for b').

Opt 2) Guarantee of stiff limit even if non-smooth variables:
_(1—b)
-~ 2b

b’ , be (—00,0)uU(1/2,1). (similarfora').
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MIRK methods for the M1 neutrino transport equations

-~ Applications: Simple test: test 1 from [J.A. Pons, J.M. |Ibanez, J.A. Miralles, MNRAS
317, 550-562 (2000)]:

Difussion limit (P = p E = E/3) in spherical symmetry (1D problem) and Ra = 0:

F
afE + aTF + ? = —C Ry (qu - E)

0
3P—E

r

= —CHKiral”
0

Analytical solution, c=1 (geometrical units):

L N3/2 2
E(t,r) = (H?d),/ exXp (_3&2;3“ ) F(t,r) = %E(tﬁfr)




MIRK methods for the M1 neutrino transport equations

-~ Applications: Simple test:
MIRK1: a=b=0. MIRK2: a=b=1/2, a'=(a-1)/2, b'=(b-1)/2. Similar results.

0.6302 0.7416 0.8401 0.9096 0.9516  MIRK1 4.1606 1.4709 1.7560 1.9217 1.9835
0.6308 0.7424 0.8409 0.9102 0.9520  MIRK2 4.1602 1.4704 1.7553 1.9202 1.9804

Numerical flux: Godunov method Numerical flux: Centered finite differences
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MIRK methods for the M1 neutrino transport equations
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-~ Applications:
Core-collapse
simulation with all
the important
interactions that
dominate the
dynamics (see
more details in
arXiv reference).



MIRK methods for the M1 neutrino transport equations

-~ Applications: Core-collapse simulation:

— Stable and accurate results using 1st and 2nd MIRK methods vs reference.

— Direct relation between the values of the coefficients and stability + correct values at
the stiff limit (non-smooth variables).

— Slight modifications from pure explicit methods and similar computational cost,
independently of the complexity of opacities and equilibrium profile.

General idea MIRK methods: Hyperbolic equations with stiff source terms that can be
somehow linearized with respect to the conserved (evolved) variables:

. 1
oU + 0;F'(U) =S(U). S(U):SE(UJ+E[SI(U)_UD]1

n
SiU) =Y GU)U".
i=1

Only the conserved variables are evaluated implicitly. More examples: GR force-free
electrodynamics, rarefied gases problems, shallow water equations with friction...



Constrained evolution schemes: SOLVE the evolution and constraint
equations on each spatial hypersurface: CFC, FCF...

CFC (Conformally Flat Condition) Isenberg 1979/2008, Wilson and Mathews 1989:
conformally flat spatial 3-metric; gravitational radiation encoded in the neglected
terms.

- Exact in spherical symmetry (CC 2011). Very accurate for axisymmetric rotating
NSs.

- Set of elliptic equations for the metric variables (including the constraint
equations): lapse, shift, conformal factor.

- Shares similar structure with XCTS, used in generation of initial data.

- Original formulation suffers from a non-local uniqueness pathology at extreme
curvature or very high density regimes. This problem is solved with the introduction
of auxiliary variables [Cordero-Carrion et al., 2009]. See talk in Einstein toolkit
meeting 2019.



FCF (Fully Constrained Formulation) Bonazzola et al., 2004

- Maximal slicing and Dirac generalized gauge.

- Similar elliptic system as in CFC with additional source terms + hyperbolic new
sector encoding the GW radiation.

Elliptic equations are more stable but difficult to solve and parallelize:

- Initial data talk by P. Grandclément — spectral methods with Lorene library,
commonly used.

- Chevishev-Jacobi methods (CJM) (Adsuara et al. 2017): parallelization is
possible.

Hyperbolic equations: PIRK methods developed for the hyperbolic FCF sector and
afterwards applied to other (free evolution) formulations (BSSN).

Coupled with matter content...



Black hole singularities: infinite quantities cannot be treated numerically

— Remap somehow your space-time: punture method commonly used in free evolution schemes

(BSSN) and BBH simulations. 1G9 |
N — t=0.42015 ms
. . . . — t=04274 ms
— Exp|§e a topological sph_ere fro_m your numerical grid o 1=043idms
containing the black hole singularity: (= 044003 ms
t =0.46038 ms
Sx10+18 — t=0.468 ms

- Pretorius 2005 simulations used GHG and excision.

mass density [kg/m

- Excision can be combined with the CFC formulation
[Cordero-Carridn et al., 2014].
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