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General Relativity and Astrophysics

• Binary Black Hole Mergers
• Binary Neutron Star Mergers
• Neutron Star – Black Hole Mergers
• Supernovae
• Accretion Disks
• Cosmology

In all these scenarios general relativity plays a fundamental role.
Kawamura et al 2016
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GR(M)HD APPLICATIONS

Moesta et al 2014
Gold et al 2014

Paschalidis et al 2013Kawamura et al 2016
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GRHD equations
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The metric in the 3+1 form
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𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 = −𝛼2𝑑𝑡2 + 𝛾𝑖𝑗 𝑑𝑥𝑖 + 𝛽𝑖𝑑𝑡 𝑑𝑥𝑗 + 𝛽𝑗𝑑𝑡
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𝐺 = 𝑐 = 1

𝑛𝜇 = −𝛼, 0,0,0  𝑛𝜇 =
1

𝛼
1, −𝛽𝑖



Equations

Einstein Equations

Hydro Equations
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𝑇𝜇𝜈 = 𝜌ℎ𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈

ℎ ≡ 1 + 𝜖 + 𝑃/𝜌



Eulerian Observer
• It moves with 4-velocity 𝒏
• 𝑢𝜇  is the four-velocity of the fluid

• 𝑢𝜇 ≡
𝑑𝑥𝜇

𝑑𝜏
 and the velocity is 𝑣𝑖 =

𝑑𝑥𝑖

𝑑𝑡
=

𝑑𝑥𝑖

𝑑𝜏

𝑑𝜏

𝑑𝑡
=

𝑢𝑖

𝑢𝑡

• In 3+1 GR, the Eulerian observer will measure the following velocity:

𝑣𝑖 ≡
𝛾𝜇

𝑖 𝑢𝜇

𝑊

where W = 𝛼𝑢𝑡  is the Lorentz factor, i.e., 𝑊 =
1

1−𝑣𝑖𝑣𝑖

=
1

1−𝑣2

7Remember: for a normal observer 𝑑𝜏 = 𝛼𝑑𝑡

𝛾𝜇
𝑖 ≡ 𝑔𝜇

𝑖 + 𝑛𝑖𝑛𝜇



Eulerian Observer

• Therefore, 𝑣𝑖 =
1

𝑊
𝑔𝜇

𝑖 + 𝑛𝑖𝑛𝜇 𝑢𝜇 =
1

𝑊
𝑢𝑖 +

𝛽𝑖

𝛼
𝛼𝑢𝑡 =

𝑢𝑖

𝑊
+

𝛽𝑖

𝛼

𝑣𝑖 =
𝑢𝑖

𝑊
+

𝛽𝑖

𝛼

𝑣𝑖 =
𝑢𝑖

𝑊
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Remember: 𝑛𝜇 = −𝛼, 0,0,0 , 𝑛𝜇 =

1

𝛼
, −

𝛽𝑖

𝛼



∇𝜇𝐽𝜇 = 0 → ∇𝜇 𝜌𝑢𝜇 = 0 →

1

−𝑔
𝜕𝜇 −𝑔 𝜌u𝜇 = 0

𝜕𝑡 𝛼 𝛾𝜌𝑢𝑡 + 𝜕𝑖 𝛼 𝛾𝜌𝑢𝑖 = 0

𝜕𝑡 𝐷 + 𝜕𝑖 𝛾 𝛼𝑣𝑖 − 𝛽𝑖 𝑊𝜌 = 0

𝜕𝑡 𝐷 + 𝜕𝑖 𝐷 𝛼𝑣𝑖 − 𝛽𝑖 = 0

Conservation of Rest Mass

𝐷 ≡ 𝛾𝜌𝛼𝑢𝑡 = 𝛾𝜌𝑊

𝑢𝑖 = 𝑣𝑖 −
𝛽𝑖

𝛼
𝑊
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∇𝜇𝑇𝜇𝜈 = 0

𝑔𝜈𝜆
1

−𝑔
𝜕𝜇 −𝑔𝑇𝜆

𝜇
−

1

2
𝑇𝛼𝛽𝜕𝜆𝑔𝛼𝛽 = 0

1

−𝑔
𝜕𝜇 −𝑔𝑇𝜆

𝜇
=

1

2
𝑇𝛼𝛽𝜕𝜆𝑔𝛼𝛽

𝜕𝑡 𝛾𝛼𝑇𝜆
0 + 𝜕𝑖 𝛾𝛼𝑇𝜆

𝑖 =
−𝑔

2
𝑇𝛼𝛽𝜕𝜆𝑔𝛼𝛽

Conservation of Energy and Momentum
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GRHD Equations

The system of equations is now written in a flux-conservative form (Valencia 
formulation, Banyuls et al 1997, Anton et al 2006):

𝜕𝑡𝑼 + 𝜕𝑖𝑭𝑖 = 𝑺

where 𝑼 is the vector of conserved variables, 𝑭𝑖  the fluxes, and 𝑺 the source 
terms.

For example, let’s take the conservation of rest mass:

𝜕𝑡 𝐷 + 𝜕𝑖 𝐷 𝛼𝑣𝑖 − 𝛽𝑖 = 0

then 𝑈 = 𝐷 = 𝛾𝜌𝑊, 𝐹𝑖 = 𝐷 𝛼𝑣𝑖 − 𝛽𝑖 = 𝛼𝐷 ෤𝑣𝑖, 𝑆 = 0.
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෤𝑣𝑖 ≡ 𝑣𝑖 − 𝛽𝑖/𝛼



GRHD Equations

𝑼 = (𝐷, 𝑆𝑗 , 𝜏)

𝐷 = 𝛾𝜌𝑊
𝑆𝑗 = 𝛾 𝜌ℎ𝑊2𝑣𝑗

𝜏 = 𝛾 𝜌ℎ𝑊2 − 𝑃 − 𝐷

In the non-relativistic case, 𝐷 → 𝜌, 𝑆𝑗 → 𝜌𝑣𝑗 , 𝜏 → 𝜌𝜖
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GRHD Equations

𝐹𝑖 = 𝛼 ×

𝐷 ෤𝑣𝑖

𝑆𝑗 ෤𝑣𝑖 + 𝛾𝑃𝛿𝑗
𝑖

𝜏 ෤𝑣𝑖 + 𝛾𝑃𝑣𝑖

𝑆 = 𝛼 𝛾 ×

0

𝑇𝜇𝜈
𝜕𝑔𝜈𝑗

𝜕𝑥𝜇
− Γ𝜇𝜈

𝜆 𝑔𝜆𝑗

𝛼 𝑇𝜇0
𝜕 ln 𝛼

𝜕𝑥𝜇
− 𝑇𝜇𝜈Γ𝜇𝜈

0
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The importance of flux-conservative Form

• Lax-Wendroff  Theorem (1960): If a consistent numerical method written 
in a flux conservative form converges to a function u(x,t) for dx that goes 
to zero, then u(x,t) is a solution of the conservation law*.

• Hou-LeFlock Theorem (1994): non-conservative schemes do not 
converge to the correct solution  if a shock wave is present in the flow.
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*note that the proper formulation of the Lax-Wendroff theorem is slightly different from what reported here (but for our purposes it is OK).



NFCFC

𝜕𝑢

𝜕𝑡
+

𝜕
1
2

𝑢2

𝜕𝑥
=

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0

Burgers’ Equation

15



WHAT IS A FLUX-CONSERVATIVE FORM?

Let’s solve it on a numerical grid



x

t

Xj+1/2Xj-1/2 Xj

tn

tn+
1



We now take the integral in t and x

We then divide by Δx





We now define





Let’s also define



And our equation reduces to:

a numerical method written in this way is said to be in flux conservative form.





How do we compute the flux?

A very simple choice could be

This method is known as FTCS and it is known to be unfortunately unstable…



Credit: A. Endrizzi

Godunov Method



RIEMANN PROBLEM

u

x

uL

uR



Cipolletta et al 2020



RIEMANN PROBLEM
• By solving the Riemann problem one can compute

• My open-source exact RMHD Riemann solver can be downloaded here: 
https://github.com/bgiacoma/Exact_Riemann_Solver

• More computationally convenient to use approximate Riemann solvers, e.g., HLLE

https://github.com/bgiacoma/Exact_Riemann_Solver


HIGH RESOLUTION SHOCK-CAPTURING METHODS

• To increase the order, instead of assuming a step function one could use a piecewise linear 
function: 

or higher orders functions (e.g., PPM).
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