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General Relativity and Astrophysics

* Binary Black Hole Mergers

* Binary Neutron Star Mergers

* Neutron Star — Black Hole Mergers
* Supernovae

* Accretion Disks

* Cosmology

Kawamura et al 2016

In all these scenarios general relativity plays a fundamental role.



GR(M)HD APPLICATIONS
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GRHD equations



The metric in the 3+1 form

n n, = (-a,0,0,0) n* = %(1, —BY)
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Xt = const.

ds? = g, dxtdx’ = —a?dt? + y;;(dx" + p*dt)(dx’ + B/ dt)

https://arxiv.org/abs/gr-qc/0703035



Equations

Einstein Equations GW _ RW B %QWR _ 87TTW
vV, T =0
Hydro Equations VMJ““ — () P = P(p,¢)
JH = put
T*Y = phu*u’ + pg*’

h=1+e+P/p



Eulerian Observer

* |t moves with 4-velocity n

* uM is the four-velocity of the fluid
dxH dx' _ dx'dr _ u

e u* = = and the velocity is v! = — = = —
dt dt dr dt ut

* In 3+1 GR, the Eulerian observer will measure the following velocity:
Lol
pi = 12
W
1 1

where W = aqu! is the Lorentz factor, i.e., W = \/— = —
1-vly; B

vi =g}, +n'n,

Remember: for a normal observer dt = adt y




Eulerian Observer
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D = \[ypau’ = \[ypW

Conservation of Rest Mass

Vu]ﬂ =0 - Vu(puﬂ) =0 -

— o (V=g pu*) =0

= o
at(a\/?put) + ai(a\/?pui) =0 ut = (Ul — ;) 1174
0¢(D) + 0;|\y(av' — B )Wp| =0

0:(D) + 0;|D(avt — p)| = 0




Conservation of Energy and Momentum
V,TH =0

1 1
9" | = 0uV=gTh) — 5T 0agap| = O

1 N
=3 W(V=9Ty") = 5T 0394

8,;(\/7an) + ai(\/?aT;f) = —“;g T“ﬁa;lgaﬁ
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GRHD Equations

The system of equations is now written in a flux-conservative form (Valencia

formulation, Banyuls et al 1997, Anton et al 2006):

0,U+0;F- =8

where U is the vector of conserved variables, F' the fluxes, and S the source

terms.

For example, let’s take the conservation of rest mass:
0:(D) + 9;|D(av' — )| = 0

thenU = D = \[ypW, F' = D(av' — ') = aD?', S = 0.




GRHD Equations

U = (D,Sj,T)

D =.[ypW
Sj = Y (phW ?v;)
T =.Y(phW? —P) —D

In the non-relativistic case, D = p,§; = pv;, T = pe€
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GRHD Equations
0" + Yy Pvt

S = a\y X




The importance of flux-conservative Form

* Lax-Wendroff Theorem (1960): If a consistent numerical method written
in a flux conservative form converges to a function u(x,t) for dx that goes
to zero, then u(x,t) is a solution of the conservation law™.

* Hou-LeFlock Theorem (1994): non-conservative schemes do not
converge to the correct solution if a shock wave is present in the flow.

*note that the proper formulation of the Lax-Wendroff theorem is slightly different from what reported here (but for our purposes it is OK).
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WHAT IS A FLUX-CONSERVATIVE FORM?

Ou  Of(u)
ot  Ox

= 0

Let’s solve it on a numerical grid

r,=jxAzxr,j7=0,---,J—1
t"=nxAt,n=0,---, N —1



Xj Xj+1/2

Xj-1 /2



We now take the integral in t and x

/””2‘ /t o @d:cdt 4 tnﬂ/ 2 01 g —

Lj—1/2 t" Tj_1/2 ox

t?H—l )

/ e [u(m,t”“) — u(:z:,t”)} dr+

Lj—1/2 tn

f (U(-Tjﬂ/zat)) —f (’Uf(-’li'j—l/zat))] dt =0

We then divide by Ax






We now define




t?‘b—l—l

T

/ (U(fb"’jﬂ/zat)) dt —/

f (u(:cj_l/g,t)) dt-



t?‘b—l—l tn+l

. _ i,
~n+l1 _ ~n
’Ufj = ’Ufj — A_,CL‘ /tn f (U(I’j+l/2, t)) dt — /tn f (u(xj—l/Za t)) dt

Let’s also define

fit12 = E/tn f (U(I’jﬂ/zﬂf)) dt




And our equation reduces to:

1

k f;’H/QE A_tj,gﬂ

a numerical method written in this way is said to be in flux conservative form.



Methods written in this form conserve u, indeed by summing over j
J— 1 ~n+1 J— 1 i
A:UZ U A:BZ At(fJ 1/~ f—1/2>

so 1 1s conserved except for fluxes at the boundaries of the numerical
domain.



How do we compute the flux?

A very simple choice could be

1 ~ -
P = g [F@) + F(@7)]

~n ~n, At T ~n, ~MN ~n ~T,
'u,j+1 = U — 5 _f(uj) + f(ujyy) — faj_y) — f(uj)]
~ T At [ ~ Tl ~ Tl
Y T S A, _f(uj—l—l) — f(uj—l)}

This method is known as FTCS and it is known to be unfortunately unstable...
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Godunov Method
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RIEMANN PROBLEM
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RIEMANN PROBLEM

» By solving the Riemann problem one can compute

fit12 = E]tn f (U(I’jﬂ/zﬂf)) dt

« My open-source exact RMHD Riemann solver can be downloaded here:
https://github.com/bgiacoma/Exact_Riemann_Solver

« More computationally convenient to use approximate Riemann solvers, e.g,, HLLE


https://github.com/bgiacoma/Exact_Riemann_Solver

HIGH RESOLUTION SHOCK-CAPTURING METHODS

- To increase the order, instead of assuming a step function one could use a piecewise linear
function:

u(x, t") =u; +o; (r—x5) for wj_1/9 <x <Tji1)9

=~ T =~ TL ~TL =~ TL
‘ a —a? . oul , —ul
o't = minmod ( J J It J )

J Ar Azx

_ a if |a|<|b| and ab>0
minmod(a, b) = < bif |b|<|a| and ab>0
0 if ab<0

or higher orders functions (e.g., PPM).
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