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The Einstein Field Equations.

Spacetime tells matter how to move and matter tells spacetime how to curve:

Gµν = 8πTµν.
Simple, right?



The Einstein Field Equations.

Not so fast...

ds2 = gµνdx
µdxν ,

Γµ
να =

gµβ

2

[
∂gνβ
∂xα

+
∂gαβ
∂xν

− ∂gνα
∂xβ

]
,

Rµ
ναβ :=

∂Γµ
νβ

∂xα
− ∂Γµ

να

∂xβ
+ Γµ

ραΓ
ρ
νβ + Γµ

ρβΓ
ρ
να,

Rµν := Rα
µαν ,

R := Rµ
µ,

Gµν := Rµν −
1

2
gµνR = 8πTµν .

The Einstein Field Equations are ten coupled, non-linear, second order partial
differential equations for the full 4-dimensional spacetime.



Ingredients in a Numerical Relativity Simulation

▶ Formulation of the field equations:
ADM, BSSN, CCZ4, Z4C, generalized harmonic, characteristic, conformal, · · ·

▶ Coordinates:
Maximal slicing, 1+log, minimal distortion, Γ-driver, gauge drivers, · · ·

▶ Constraint handling:
Free evolution, constrained evolution, constraint damping.

▶ Initial data corresponding to an astrophysical system.

▶ Handling of black holes: Excision, moving punctures.

▶ Boundary conditions: Constraint preserving, outgoing radiation, characteristic
extraction, characteristic matching, · · ·

▶ Numerical method: Finite differences, spectral, discontinuous Galerkin, · · ·
▶ Horizon finding.

▶ Wave extraction.



The 3+1 Split of Spacetime.

One way of splitting up the space-
time is the 3+1 split, i.e. split
it into 3-dimensional hypersurfaces
with unit normal vector

nµ = (1/α,−βi/α), nµ = (−α, 0)
γµν = gµν + nµnν

tµ = αnµ + βµ

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
.

gµν =

(
−α2 + βkβ

k βi
βj γij

)
, gµν

(
−1/α2 βi/α2

βj/α2 γij − βiβj/α2

)



The 3+1 Split of Spacetime.

The 3-metric γij determines the curvature intrinsic to the hypersurface, however this
does not account for the full 4-dimensional curvature.
The remaining curvature is encoded in how the normal vector, nµ, is parallel
transported from one point in the hypersurface to another.
With the definition of the projection operator:

Pµ
ν := δµν + nµnν

it turns out that the extrinsic curvature can be defined as:

Kµν := −Pα
µ∇αnν = −(∇µnν + nνn

α∇αnν)

The extrinsic curvature is purely spatial, i.e. nµKµν = nνKµν = 0 and symmetric
Kij = Kji.



The 3+1 Split of Spacetime.

The 3+1 split can now be performed by contracting the Einstein field equations with
the normal vector nµ and Pµ

ν :

H = nµnνGµν = 8πnµnνTµν = 8πρ

Mµ = −nνPα
µGνα = −8πnνPα

µ Tαν = 8πjµ

Eµν = Pα
µPβ

ν Gαβ = 8πPα
µ P

β
ν Tαβ = 8πSµν

After a long derivation, where the 4-d curvature variables are written in terms of the
3-d curvature variables and extrinsic curvature, these equations become the constraint
and ADM evolution equations:

H = (3)R+K2 −KijK
ij = 16πρ,

M = Dj(K
ij − γijK) = 8πji

∂tγij = −2αKij +Diβj +Djβi

∂tKij = −DiDjα+ α
[
(3)Rij +KKij − 2KikK

k
j

]
+ 4πα [γij(S − ρ)− 2Sij ]

+βk∂kKij +Kki∂jβ
kKkj∂iβ

k.



The 3+1 Split of Spacetime.

Some comments are in order:

▶ The hamiltonian and momentum constraints does not contain second time
derivatives of the metric and form a set of four elliptical equations.

▶ The evolution equations are six non-linear, second order, partial differential
equations of hyperbolic type.

▶ The gauges, lapse and shift, are not included in the evolution equations and have
to be prescribed separately.

▶ If the constraint equations are satisifed initially, the evolution equations
guarantees, in the absence of numerical error, that they remain satisfied.

▶ If the constraint equations are not satisfied, the solution is not physical.

▶ The constraints can be added to the evolution equations and since they contain
second derivatives of the metric will change the principal part of the equations.

▶ How is the black hole singularity to be handled?

▶ What are the boundary conditions?



Brief Historical Interlude.

Pioneering work in 1964 (Hahn & Lindquis) and 1975 ( Smarr, Eppley) set the stage
by simulationg the head on collision of two non-rotating black holes in axisymmetry.

In 1993 the Binary Black Hole Grand Challenge Alliance was formed. A collaboration
among 9 different US institutions.



Brief Historical Interlude.

Towards the end of the Grand Challenge Alliance, it became clear that one main
problem might be with the ADM equations themselves.

In the late 1980’s Nakamura, Oohara and Kojima first proposed a formulation using
conformal decomposition of the metric and the tracefree part of the extrinsic
curvature, Nakamura, Oohara & Kojima, 1987 and Nakamura & Oohara, 1987.

This was first modified and used for gravitational waves and neutron stars in the mid
1990’s, Shibata & Nakamura, 1999 and Nakamura & OOhara, 1999 and Shibata,
1999.

Tested for weak gravitational waves by Baumgarte and Shapiro, 1999.

The Cactus framework was developed at the AEI for the purpose of allowing large
collaborations to work together and to test different formulations and methods with
the same code: Bona, Masso, Seidel & Walker, 1998.
An implementation of BSSN in Cactus quickly followed, Alcubierre et al. 2000



Well Posedness.

To give a flavor of the concept of well posedness, Consider a first order in space and
time system of evolution equations with N variables u of the form

∂tu+M i∂iu = 0,

where M i are N ×N matrices (one for each direction).

If we choose an arbirary direction with unit vector ni we can then construct the
principal symbol P (ni) := M ini.
The evolution system is well posed if the principal symbol has N real eigenvalues and a
complete set of eigenvectors (strongly hyperbolic) for all directionsni.
Applying such an analysis to the ADM equations shows that they, in general, does not
have a full set of eigenvectors, though they do have N real eigenvalues.
Thus the ADM equations are only weakly hyperbolic and NOT well posed.
It is therefore not surprising that all simulations using the ADM equations turned out
to be unstable.



The BSSN Formulation.

Introduce a conformal rescaling of the three metric

γij = ψ4γ̃ij .

We choose ψ = γ1/12 such that the determinant of γ̃ij is 1. In addition we introduce a
trace decomposition of the extrinsic curvature.

K = γijKij ,

Aij = Kij −
1

3
γijK.

We then promote the following variables to evolution variables

ϕ = lnψ =
1

12
ln γ or W = 1/ψ2 or χ = 1/ψ4,

K = γijK
ij ,

γ̃ij = e−4ϕγij ,

Ãij = e−4ϕAij .



The BSSN Formulation.

We finally, in addition, promote the conformal connection functions

Γ̃i = γ̃jkΓ̃i
jk = −∂j γ̃ij , (1)

to evolved variables as well. The final set of evolution variables are ϕ, K, γ̃ij , Ãij and
Γ̃i.
Note that the momentume constraint has to be used to eliminate some troublesome
terms in the evolution equation for Γ̃i.
It is also necessary to actively enforce the constraints Ãi

j = 0 and det(γ̃ij) = 1.

Finally it has proven beneficial to replace the evolved Γ̃i with values Γ̃i
(n) = γ̃jkΓ̃i

jk

recalculated from the current conformal metric γ̃ij , wherever derivatives of them are
not needed.
It can now be proven that BSSN is in fact strongly hyperbolic, Sarbach et al., 2002.



The BSSN Formulation.

The evolution equation for all the BSSN variables are

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k,

∂tϕ = −1

6
αK + βk∂kϕ+

1

6
∂kβ

k,

∂tÃij = e−4ϕ [−DiDjα+ αRij + 4πα{γij(S − ρ)− 2Sij}]TF + α
(
KÃij − 2ÃikÃ

k
j

)
+βk∂kÃij + Ãik∂jβ

k + Ãjk∂iβ
k − 2

3
Ãij∂kβ

k,

∂tK = −DiDiα+ α

(
ÃijÃ

ij +
1

3
K2

)
+ 4πα(ρ+ S) + βk∂kK,

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃j

(n)∂jβ
i +

2

3
Γ̃i
(n)∂jβ

j

−2Ãij∂jα+ 2α

(
Γ̃i

jkÃ
jk + 6Ãij∂jϕ− 2

3
γ̃ij∂jK − 8πe4ϕji

)
.

Here Rij = R̃ij +Rϕ
ij , where

Rϕ
ij = −2D̃iD̃jϕ− 2γ̃ijD̃

kD̃kϕ+ 4D̃iϕ D̃jϕ− 4γ̃ijD̃
kϕ D̃kϕ,

R̃ij = −1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k
(n) + Γ̃kΓ̃(ij)k + γ̃lm

(
2Γ̃k

l(iΓ̃j)km + Γ̃k
imΓ̃klj

)
.



Puncture Initial Data.

In the York-Lichnerowicz conformal decomposition of the constraint equations the
physical metric and extrinsic curvature is given by

γij = ψ4ḡij

Kij = ψ−10Āij +
1

3
γijK. (2)

Under the assumption of vacuum, conformal flatness and maximal slicing, it is
remarkable that the there is a simple analytical solution for Āij as

Āij =
3

2r2

[
niPj + njPi + nkP

k(ninj − δij

]
− 3

r3
(ϵilknj + ϵjlkni)n

lSk.

Here P i and Si are the ADM linear and angular momenta.
Writing the conformal factor as

ψ = u+ ψBL = u+

N∑
i

mi

2|r − ri|
.

Then a single elliptical equation can be solved for u that is regular everywhere.



BSSN Gauge Conditions.

The simplest choice for the lapse would be α = 1, i.e. geodesic slicing, where the
coordinates are in free fall. Not a good idea when black holes are present.
A popular early lapse condition was maximal slicing which is an elliptical equation for
the lapse

D2α = α
[
KijK

ij + 4π(ρ+ S)
]

This condition has the important property of singularity avoidance where the lapse
goes to zero fast enough that the singularity is never reached.
A popular alternative is the Bona-Masso family of slicing conditions

∂tα = −α2f(α)K

Here f(α) = 1 is harmonic slicing, while f(α) = 2/α is called 1+log slicing. Harmonic
slicing is only mildly singularity avoiding, while 1+log slicing is almost as singularity
avoiding as maximal slicing.
All of these slicing conditions sufferes from the problem that the slices gets stretched
as proper time elapses differently away from the singularity.



BSSN Gauge Conditions.

Counteracting slice stretching can be achieved with a suitable shift condition.
It turns out that Γ̃i, introduced in BSSN, provides a convenient way to define an
effective shift condition. The Gamma-driver condition

∂tβ
i = FBi + βj∂jβ

i

∂tB
i = ∂tΓ̃

i + βj∂j(B − Γ̃i)− ηBi

Originally F was chosen to keep the shift equal to zero at the punctures and there was
no advection terms

F = F (α,ψBL) =
3

4
αnψ−N

BL

whereas for moving punctures we want the shift to be non-zero at the punctures

F =
3

4
.

Alternatively it can be expressed in first order form

∂tβ
i =

3

4
Γ̃i + βj∂jβ

i − ηβi.



The Generalized Harmonic Formulation.

Generalized Harmonic coordinates satisfy the inhomogeneous wave equations

Hµ(x, g) = gµν∇α∇αxν = −Γµ,

where Hµ(x, g) is an arbitrary but fixed algebraic function of the coordinates xµ and
the metric gµν .
In these coordinates the Einstein vacuum field equations become

gαβ∂α∂βgµν = −2∇(µHν) + 2gαβgρσ (∂ρgαµ∂σgβν − ΓµαρΓνβσ) .

All second derivatives of the metric appears on the left hand side, so the principal part
is manifestly hyperbolic.
This system can be kept as a second order system or rewritten as a first order
symmetric hyperbolic system.



Goddard 2005 Workshop.

November 2-4, 2005 a historical numerical relativity workshop was held at NASA
Goddard. URL: https://asd.gsfc.nasa.gov/archive/astrogravs/conf/numrel2005/
AEI-LSU-FAU: Punctures, BSSN, 1+log slicing, Gamma-driver shift, co-rotating shift,
drift correct, simple lego excision, fixed mesh refinement, evolved for more than an
orbit, no waveforms.
Brownsville-Goddard: Moving puncture, 1+log slicing, Gamma driver shift, QC0, not a
complete orbit, clean waveforms.
Pretorius: ID: Boosted scalar field collapse+Cook-Pfeiffer, Generalized Harmonic
second order formulation, constraint damping, dynamic excision, about 1.5 orbits,
wave extraction.
Cornell-Caltech: KST, Cook-Pfeiffer initial data, multi-domain spectral, excision, use
shift to control horizon shape, constraint blowup. Had started to look at Generalized
Harmonic.



The Einstein Toolkit.

Some of the important physics capabilities of the Einstein Toolkit are:

▶ Spacetime evolution: McLachlan, Lean, Proca, Canuda, Baikal.

▶ Relativistic Hydrodynamics: GRHydro,IllinoisGRMHD, GiRaFFE.

▶ Gravitational Wave Extraction and analysis: Extract, WeylScal4,

Multipole, PITTNullCode.

▶ Apparent Horizon Analysis: AHFinder, AHFinderDirect,

QuasiLocalMeasures.

▶ Initial Data: Exact, Brill Wave data, Lorene data importers, TwoPunctures,
FLRWSolver, FUKA data importers, SGRID importer, more on the way...

▶ Adaptive Mesh Refinement: Carpet, CarpetX

▶ Multipatch: Llama.



Concluding Remarks.

▶ This is of course not the full story.

▶ I only mentioned puncture initial data, but there are many other valuable efforts
going on in order to provide the best initial data possible.

▶ I did not cover other fomulations of the Einstein field equations that have proven
useful, such as Z4c and CCZ4.

▶ There has been an impressive improvement in the computational infrastructures
used since 2005, such as adaptive mesh refinement, multipatch infrastructures and
adapted coordinates. High mass ratios, high spins.

▶ We have a much better understanding of the trumpet solution that punctures
evolve to when 1+log and Gamma-driver shifts are used.

▶ The Generalized Harmonic Formulation implemented in SPEC benefited from
impressive advancements such as the ability to control the horizon shape for
excision, the development of the dual frame approach to corotating coordinates.
Very long and accurate waveforms.

▶ More to come e.g. CarpetX, SpECTRE and other...


