

What do Hadron-Hadron interaction have to do with Neutron Stars? Maybe nothing

L. Fabbietti

Technische Universitaet Muenchen Excellence Cluster "Origin and Structure of the Universe" <u>https://www.e12.ph.tum.de/groups/kcluster</u> Utrecht University WS2014-15

O. Arnold, C. Curceanu, L. Fabbietti, K. Piscicchia, A. Scordo, I. Tucakovic, O. Vasquez-Doce TUM and LNF

Facts about Neutron Stars

13

Radius (km)

14

15

12

10

11

R ~ 10−15 km M ~ 1.5 M⊙

- Very high density in the interior
- Strong magnetic fields
- Rotating object emitting Synchrotron radiation in Radio-Frequency (Pulsar character)
- Mass measured in binary systems with White Dwarfs (Shapiro Delay, WD Spectroscopy)
- Radius Measurement very difficult
- Masses ranging from 1.4 M_• to 2 M_•

What is inside Neutron Stars??

• Hadron composition

- Only Nucleons
- Antikaons-Nucleons condensate
- Nucleons and Hyperons
- Nuclear Pasta
 - lasagne
 - spaghetti
- <u>Quark star</u> (Color super-conducting strange quark matter)

For each assumption about the content the specific Equation of State (EOS) should be determined to check whether this matches the NS Data

NÜNCHE

- 1) Equation of State (EOS): How pressure depends on density
- 2) This equation is defined by a parameter we call <u>Compressibility</u>

<u>Soft EOS:</u> matter can be compressed easily Stiff <u>EOS:</u> compression becomes difficult

2) Given an object with a certain density the internal pressure must be compensated by gravity

3) From P(R)=0 -> the relation M(R) can be determined for each EOS as a function of the assumed density

$$Q = 2^{-8} Q_{0}$$

It is not so easy to fix the density but the EOS must cross the measured values of the masses!

Determination of the EOS of nuclear matter

P. Danielewicz nucl-th/0512009

$$E = \alpha \cdot \rho + \beta \cdot \rho^{\gamma}$$

The compressibility parameter :

 $K = 9\rho_0^2 \frac{d^2}{d\rho^2} \left(\frac{E}{A}\right)$

Soft EOS : K< 290 MeV Stiff EOS: K> 290 MeV Tool: Particle Production in heavy ion collisions

Vienna University of Technology

Determination of the EOS of nuclear matter

P. Danielewicz nucl-th/0512009

$$E = \alpha \cdot \rho + \beta \cdot \rho^{\gamma}$$

The compressibility parameter :

 $K = 9\rho_0^2 \frac{d^2}{d\rho^2} \left(\frac{E}{A}\right)$

Soft EOS : K< 290 MeV Stiff EOS: K> 290 MeV

$$T = \frac{dp_X}{dY_{CM}} \bigg|_{Y_{CM} = 0}$$

<u>Soft EOS</u> from particle production in Heavy Ion Collisions

Large Masses Issue

Radius (km)

- Production of strangeness is energetically favourable
- It relieves the Fermi pressure of neutrons and protons
- But... a decrease of the pressure softens the EOS
- Decrease of the maximum mass of neutron stars
- $2 M_{\odot}$ neutron star measured
- EOS cannot be too soft
- Some EOS are disfavoured, for example Antikaon condensate

Hyperon Star

Strangeness violation possible due to large time scale of NS Appearance of Hyperon already starting at $2\varrho_0$ This scenario might also be problematic for large masses (~ $2M_{\odot}$) since the hyperon appearance implies new degree of freedom and hence a softening of the EOS

Hyperon Star

It all depends upon the Λ -N and Λ -NN interaction and whether or not it has a repulsive core This repulsive core could stiffen again the EOS allowing for heavy neutron stars

2 Families of Compact Stars

Transition from one kind of star to the other Measurements of the Radii of low-<u>mass NS are necessary!</u>

- 1) Hadronic Stars (with Nucleons, baryonic resonances and Hyperons inside) with low Mass (up to 1.5 M_{\odot}) and small Radii (9-10 Km)
- 2) Strange Quark Stars with high Mass and large Radii

A. Drago, A. Lavagno, G. Pagliara Phys. Rev. D89 (2014) 043014

Experimental Evidence I

Λ- or **Σ-** Hypernuclei

Λ -Nucleon Potential

U~ -30 MeV (attractive) from Hypernuclei No idea yet about the momentum and density dependence

Σ -Nucleon Potential

No Idea at all

Λ

Experimental Evidence II

 Λ -p Σ -p scattering Λ and Σ beams from K-+p collisions "seen" by Bubble chambers

Our Plan: study the Hyperon-Nucleon interaction more in detail with accelerator experiments

K⁻ "beams" with very low (~100 MeV) momentum

 Λ and Σ production in exclusive reactions with small relative momenta

Limited Statistics (15.000 evts)

p+A collisions at fixed target p+p and p+A collisions experiment with $E_{KIN} \sim GeV$

at the LHC (TeV Regime)

 Λ and Σ production in a rather controlled environment. Study of the Λ/Σ -nucleon interaction via **Femtoscopy**

> **Moderate** statistics (350.000 evts)

 Λ and Σ production in a rather <u>complex</u> environment. Study of the Λ/Σ nucleon interaction via **Femtoscopy**

> **Good** statistics (3.000.000 evts)

K⁻ + ⁴He reactions at Daφne

- K- Momentum = 127 MeV/c
- $\sigma p/p \sim 0.4 \text{ MeV/c}$
- 96% geometrical acceptance
- Calorimeter for $\gamma s: \sigma_m \sim 18 \text{ MeV}/c^2$
- Vertex resolution: 1 mm
- Gas: 90% He, 10% C₄H₁₀

KLOE Experiment

K-⁴He

Σ⁰-Nucleon Correlation

Low Energy K⁻

 Σ^0 -p long-range correlation Σ^0 -n short-range correlation

Experimental Data compared to Calculations

Σ^{0} -Nucleon Correlation

Low Energy K⁻

Σ^{0} -p long-range correlation Σ^0 -n short-range correlation

Experimental Data compared to Calculations

Preliminary

The probability distribution of the momenta of the FS hadrons are calculated on the base of the scattering amplitudes. comparison with experimental data!

2-Nucleons Absorption + Final State Interaction ???

Λ-Nucleon Correlation

- A-Nucleon and Σ -Nucleon interactions can be tested via exclusive hadronic reactions with stopped and in-flight K⁻ "beams".
- Long and short- range interactions can be addressed
- let's see

Scattering data provide information for hyperon Momenta above 150/ 200 MeV. Is there a tool to investigate the low momenta region?

We try with Femtoscopy

The Femtoscopy Method

Distinguishable and Undistinguishable pairs of particles emitted from a common source

Correlation function is a measure of the source size and also of the particle interaction

F. Wang, and S.Pratt, Phys. Rev. Lett. 83 (1999) 3138

$$C(\vec{p}_{a}, \vec{p}_{b}) = \frac{\mathcal{P}(\vec{p}_{a}, \vec{p}_{b})}{\mathcal{P}(\vec{p}_{a})\mathcal{P}(\vec{p}_{b})} \approx \frac{\int d^{4}x_{a} d^{4}x_{b} S(p_{a}, x_{a}) S(p_{b}, x_{b}) |\phi_{rel}(\vec{p}_{b} - \vec{p}_{a})|^{2}}{\int d^{4}x_{a} d^{4}x_{b} S_{a}(\vec{p}_{a}, x_{a}) S_{b}(\vec{p}_{b}, x_{b})}$$

$$C(k) = \mathcal{N} \frac{N(\mathbf{p}_1, \mathbf{p}_2)_{\text{same}}}{N(\mathbf{p}_1, \mathbf{p}_2)_{\text{mixed}}} \quad k = \frac{1}{2} |\mathbf{p}_1 - \mathbf{p}_2|$$

Experimental Observable

Femtoscopy in p+A reactions (GeV)

p+Nb, 3.5 GeV

Interaction

kinematic freeze-our surface

Can be determined for p-p and Ap pairs via Transport Calculation (UrQMD) -> The Source is hence known and the measured correlation provides the interaction strength.

Calibration on the p-p Correlation

pp Pairs: Coulomb Interaction Strong Interaction Quantum Statistics for Fermions

$$C(k) = \mathcal{N} \frac{N(\mathbf{p}_1, \mathbf{p}_2)_{\text{same}}}{N(\mathbf{p}_1, \mathbf{p}_2)_{\text{mixed}}} \quad k = \frac{1}{2} |\mathbf{p}_1 - \mathbf{p}_2|$$

Koonin Fit Function -> Extraction of the Source Radius R_G

S. E. Koonin, Phys. Lett. B 70 (1977) 43 S. Pratt et al., Nucl. Phys. A 566 (1994) 103c

Λ-p source: 1.24 times smaller than p-p source (from UrQMD)

UNIVERSITÄT MÜNCHEN

• Fit for S=0 and S=1 components.

Ap Scattering Length

Experimental Distribution Fit Function $C(k) = \mathcal{N} \frac{N(\mathbf{p}_1, \mathbf{p}_2)_{\text{same}}}{N(\mathbf{p}_1, \mathbf{p}_2)_{\text{mixed}}} \quad k = \frac{1}{2} |\mathbf{p}_1 - \mathbf{p}_2|$ $C(k) = 1 + \sum_{S} \rho_{S} \left| \frac{1}{2} \left| \frac{f^{S}(k)}{r_{0}} \right|^{2} \frac{2\mathcal{R}f^{S}(k)}{\sqrt{\pi r_{0}}} F_{1}(Qr_{0}) - \frac{\mathcal{I}f^{S}(k)}{r_{0}} F_{2}(Qr_{0}) \right|$ 2.4 Preliminary 2.3 a_{1S0} [fm] 1.9 C(K) 1.8 1.7 1.6 1.65 1.7 1.75 1.8 1.85 R_G [fm] 100 200 3.5 k [MeV/c] d0_{1S0} [fm] 2.5 First Fit of the correlation delivers parameters in perfect agreement with scattering data !!!! **Further Improvements:** • Source-Radius Determination, 1.65 1.75 1.7 1.8 1.85 R_G [fm] • Improved S/B Ratio,

r [fmh

The Experimental Data

p+p/A at 3.2 GeV

p+p/A at 7 TeV

6 Particles/Evt

2000 Particles/Evt

only 350.000 Λ but "clean" environment better knowledge of the emitting source large Λ and Σ statistics (~ 3 Mevt) but more complicated source to be described

Summary

Test the Hyperon-Nucleon Interaction with Femtoscopy at intermediate and high energies (compare to Lattice potential or other calculations)

Verify the short and long-range Hyperon-nucleon FSI with the low energy data.

Solve the puzzle of hyperon in Neutron Stars

The people in Munich

L

Experiments with π Beams

- π-absorption mostly on the nucleus surface
- less model dependent

Study of Hadron-nucleon interaction

Not so easy to measure, since π -beams are secondary beams with large emittance

CERBEROS: 3-heads dog at the HADES entrance

Experiments with π Beams

- π-absorption mostly on the nucleus surface
- less model dependent

Study of Hadron-nucleon interaction

First Measurement of K absorption in normal nuclear matter

η: Pluto simulations in 4π

Angle between the η -meson and proton in the proton-proton rest system (symmetric by construction)

Already N(1710) can not be distinguished from the 3-body phase-space distribution

Shapiro Delay

- GR: speed of light depends on the gravitational potential strength along its path
- Shapiro Idea:
 - Measure the echo of radar pulses from Venus or Mars
 - Time delay should increase by 2x10⁻⁴ s if pulses pass near the sun
- Same effect for radio pulses of NS when passing the White-Dwarf Companion
 - Mass determination for the two stars.

Interferences among Resonances

 $p + p \rightarrow ppK^- + K + \rightarrow p + \Lambda + K^+$

Interferences among Resonances

 $p + p \rightarrow ppK^- + K + \rightarrow p + \Lambda + K^+$

How many N* do exist? Can these interfere with each others? Interference: Coherent some of the different amplitudes contributing to the same final state

TECHNISCHE UNIVERSITÄT MÜNCHEN

Interferences among Resonances

E. Epple, R. Muenzer

proton-proton

proton-proton

N* Resonances in the PDG with measured decay into $K^+\Lambda$

Notation in PDG	Old notation	Mass [GeV/c ²]	Width [GeV/c ²]	Γ _{ΛΚ} /Γ _{Αll} %
N(1650) $\frac{1}{2}^{-}$	N(1650)S ₁₁	1.655	0.150	3-11
N(1710) $\frac{1}{2}^+$	N(1710)P ₁₁	1.710	0.200	5-25
N(1720) $\frac{3}{2}^{+}$	N(1720)D ₁₃	1.720	0.250	1-15
N(1875) $\frac{3}{2}^{-}$	N(1875)D ₁₃	1.875	0.220	4±2
N(1880) $\frac{1}{2}^+$	N(1880)P ₁₁	1.870	0.235	2±1
N(1895) $\frac{1}{2}$	N(1895)S ₁₁	1.895	0.090	18±5
N(1900) ³⁺ / ₂	N(1900)P ₁₃	1.900	0.250	0-10

Non Resonant final states $(p\Lambda)(^{2S+1}L_J)-K+$

Given the transition amplitude for 1 possible wave

 $A^{\alpha}_{tr}(s) = \left(a^{\alpha}_1 + a^{\alpha}_3\sqrt{s}\right)e^{ia^{\alpha}_2}$

One has to sum all the possible contributing waves to get the total amplitude

The Partial Wave Analysis Framework

E. Epple, R. Muenzer

http://pwa.hiskp.uni-bonn.de/ A.V. Anisovich, V.V. Anisovich, E. Klempt, V.A. Nikonov and A.V. Sarantsev Eur. Phys. J. A 34, 129152 (2007)

A total Amplitude is fitted event-by-event to the data and it includes: N(1650), N(1710), N(1720), N(1875), N(1880), N(1895), N(1900) Non-resonant $PK^+\Lambda$ production waves Interferences

110 different solutions have been tested to the p+p at 3.5 GeV data 4 best solutions are identified on the base of the likelihood of the fit

PWA Results

E. Epple, R. Muenzer

proton-proton

Angular Distributions of the pK⁺ Λ final state

Name

1/83/8

6/9

8/8

PWA Results

E. Epple, R. Muenzer

proton-proton

Angular Distributions of the $pK^+\Lambda$ final state

PWA Results

E. Epple, R. Muenzer

proton-proton

Name	N* combination
1/8	N(1650), N(1710), N(1720), N(1900)
3/8	N(1650), N(1710), N(1720), N(1880)
6/9	N(1650), N(1710), N(1720), N(1900), N(1895)
8/8	N(1650), N(1710), N(1720), N(1895), N(1880)

Invariant Mass Distributions

Angular Distributions of the $pK^+\Lambda$ final state

2400

2600

PWA Results

$$p + p \to p + \Lambda + K^+$$
 $\sqrt{s} = 3.2 \,\mathrm{GeV}$

Exclusive measurement of the final state including all angular distributions and invariant mass distributions Not shown here: the data <u>can not be reproduced</u> by an <u>incoherent</u> sum of different resonant and non-resonant channels

Interferences play an important role in nucleon-nucleon collisions at $\sqrt{s} = 3.2 \,\text{GeV}$, when do these interferences fade away?

The same is currently investigated for the resonancese mainly contributing to the dilepton final states ($\Delta(1232)$, N(1440)..)

Strange Hadrons in Neutron Stars

R ~ 10−15 km M ~ 1.5 M⊙

Onset of strange hyperons production

C. Providencia et al, Phys. Rev. C87, 055801-055809 (2013)

Hyperons are produced already at moderate densities EOS with strangeness can reach high masses only if

ΑΝ, Σ ΑΛ, ΣΣ ΑΝΝ, ΣΝΝ

Interactions are repulsive on the short-range

Scenario Nr. 1: Kaon Condensate

Neutron

Kaon

No Pauli Blocking!

 $if m_{K^{-*}} < \mu_{e^{-}}$ $e^{-} \rightarrow K^{-} + \nu_{e}$ $n \rightarrow K^{-} + p$

J. Schaffner and I. N. Mishustin Phys. Rev. C 53, 3 (1996)

A.Ramos, J. Schaffner-Bielich and J. Wambach nucl-th/0011003

The Experimental Data

Examples from Calculations

repulsive Coulomb + Strong Force core for pp interaction

How is it for Λ ?

Not clear yet because large statistics is needed

Massive Hyperon-Stars?

