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Introduction - About Me & My PhD

Finished a MSc at UvA + VU in 2019, graduation project at Nikhef

Started a PhD in CS at UvA (PCS) + CERN in 2020

Now writing up — aim to defend in autumn

Golden staple-like PhD thesis

In this talk: very brief overview of my work, and some insights into GPU tracking



Problem Statement - Track Reconstruction

e Increased pile-up threatens to make track
reconstruction infeasible for HL-HLC, FCC

e More efficient compute > more available
resources -> more interesting physics

e Compute complexity scales ~O(u?)

e This will require research into novel
algorithms, novel hardware, etc.

e In my case: how can this run on GPUs?

Source: CERN CDS



Problem Statement - Track Reconstruction
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Massively Parallel Computing

€10,000

/\

AMD EPYC 9554 NVIDIA RTX 6000
64 cores 18,176 cores
360W TDP 300W TDP



Massively Parallel Computing
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Massively Parallel Computing

Can be programmed

independently
Cores x Cycles/s x FLOP/cycle = FLOP/s
i AMpR » 64 3.75B 48 11.5 TFLOP/s
|8
18,176 2.51B 2 91.1 TFLOP/s

/

Must be carefully
programmed in lockstep




Massively Parallel Computing
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Can track reconstruction be
implemented efficiently on
massively parallel systems?



ACTS - A Common Tracking Software

e ACTSis ACommon Tracking Software
e Goalsaretobe...
o  Feature complete
o  Well-written
o  Extensible
o  Experiment-agnostic (sSPHENIX, ePIC, etc.)
o  an R&D platform
e Originally based on ATLAS tracking

e Now being migrated back into Athena

b

N
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What are the challenges in
developing track
reconstruction algorithms to
massively parallel
architectures?



Problem Statement - State-of-the-Art

e Trackreconstruction consists of a task graph of structurally different algorithms
e Here denoted according to their “13 dwarves” classification
e \Varying degrees of complexity and challenge...

Unbound
Dense | Cubic combir More der branc

possible  mapped o mett

Computel
compon

Local and/or global
optimisation problem mapped

very im multi-di over tracks

Hit Clustering SRR Seed Finding UEIES [T Combinatorial Track Fitting

Structured grids, graph Formation N-body, graph Estimation Kalman Filter Structured grids, dense
traversal, sparse data Map-reduce, dense traversal, B&B Map-redUCe, dense BB, structured grids linear algebra
linear algebra linear algebra




How can structured grid data
be represented in order to
maximize the efficiency of
arbitrary computations?



Research - Vector Fields - Amuse Bouche

Most experiment magnetic fields are fairly
homogeneous, but not quite

Those irregularities matter when e.g.
propagating particle motion

Storing ATLAS B-field: ~200 MB

Accessed millions of times per second!

How do we do that quickly?

We don’t even know how to do than on CPUs,
and if we did it would not translate!

Yn + hks

Yn + hka/2 -

Yn+ hk1/2 A
Yn 7

th th+ h/2

Source: ACTS Project

th+h



Research - Vector Fields

e Multi-dimensional data is everywhere HPC
o  Magpnetic fields
o  Butalso CFD, lattice QCD, etc.

e Must be accessed very frequently in
hard-to-predict patterns for iterative
numerical methods

e Increasing cache efficiency can improve
performance for these kernels

e Design spaceis large

o  Many functional and non-functional
properties come into play

Source: Moritz Lehmann



Research - Vector Fields

e Interpolation methods (F & EF)

o NN, linear, cubic, etc.
e Boundary checking (F & EF) ” H ”

o Wrap, mirror, zero, etc. T
e Array layout (EF) 159%?%;’3:' Linear Cubic

o  Row-major, column-major, Morton, etc. _ . _
e Coordinate transformation (F & EF)

o  Affine, polar, etc. -
e Storage location (EF)

o Main memory, CUDA memory, texture

memory, etc.
Potentially many more! zr?eirg]g%%r:)aj;- Bilinear Bicubic

e Across many devices and with many access

patterns Source: Wikipedia



Research - Vector Fields

e We developed a category-theoretical
method for decomposing this design space
(like on the previous slide)

e (Can bere-composed at compile time with
zero run-time overhead

e Allows our method to serve as both a
benchmarking suite and design space
exploration tool...

e ...aswellasalibrary forimplementing
heterogeneous multi-dimensional arrays

ATLAS magnetic field




Research - Vector Fields

e Thiswork was published in ICPE’23
e And it was nominated as candidate to the best paper award!
e https://doi.org/10.1145/3578244.3583723
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ABSTRACT 1 INTRODUCTION

We present a novel benchmark suite for vector Vector quitous in a variety of domains sciences such
4 d teorlogy [34], [26), and high-c

i quaciyng and ranking ek esormanen We decompons

backends,the latter of which can be further decomposed into com-
ponents with different functional and non-functional properties
Through compile-time meta-programming, we generate a large
number of benchmarks with minimal effort and ensure the exten-
sibility of our suite. Our empirical analysis, based on real-world
applications in high-energy physics, demonstrates the feasibility
of our approach on CPU and GPU platforms, and highights that
our suite is able to evaluate performance-critical design choices
hnn]\y‘ mepomue that our work towards composing vector fields
=z ary components is not only useful for the purposes of

b kmg, but that it naturally gives rise to a novel library for
implementing such ikl n domai applicaions.

cC CONCEPTS

[22). When developing applications which rely on vector fields,
finding efficient data structures for storing and methods for ac
ing such fields can be paramount to achieving high performance.
Unfortunately, there is no universal solution—let alone a perfor-
—for representing vector fields in software: the design
space is far too large and the requirements are far too varied. In
terms of functional requirements [14], for example, some appli-
cations might require two-dimensional fields while others might
require three-dimensional data. Non-functionally, applications may
exhibit different access patterns which can significantly affect th
performance of a given implementation. Finally, the landscape of
hardware on which domain applications are executed has become
more complicated than ever: traditional homogencous computing
systems now compete with heterogencous systems equipped wit
a variety of accelerators [5]. Thus, domain scientists must find
methods o[uumx‘, and accessing vector fields in heterogeneous
ich guaranty performance in specific appli-
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lesign space into
model a field’s usage, and storage backends which model the field’s
implementation. We then use compile-time meta-programming to
generate benchmarks across the entire design sp:
effort than would be required by a conventional trial-and-error
approach. Finally, we enable developers to directly apply the results
of our benchmark suite through a novel library which exposes the
same domain decomposition used by our suite for use in domain
applications.

th far less



https://doi.org/10.1145/3578244.3583723

Research - Morton Layouts - Amuse Bouche
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Research - Morton Layouts

e The Morton curve provides balanced locality ¢ ) ¢ ¢ N
compared to row-major and column-major \/
layouts =

e Calculated by interleaving the bits of the

binary expansions of the input coordinates!
o  Can be done efficiently on modern
commodity hardware

e Butwhatif you were to interleave the bits in
arbitrary patterns?

£(5,3,4) = £(1012,0115,1002) = 1010101105 = 34219



Research - Morton Layouts

01000101, 01000110,
f(1011,,0101,) = V00100010, = 10349 f(10112,0101;) = v00010001, = 8719

017100717 01010111,



Research - Morton Layouts s

e Turnsout this gives you very large families of %ﬁ
array layouts, all of which have different cache (‘)’[M’of):f]
properties!

e We propose that evolutionary algorithms can
be used to efficiently explore this design space

e We show that we can significantly improve
performance - up to 10 times in extreme cases

e Automated, problem-agnostic optimisation
method!

(@) [1,1,0,00,1] (r)[1,1,0,0,1,0] (s) [1,1,0,1,0,0] (t)[1,1,1,0,0,0]




Research - Morton Layouts

This was accepted to ICPE’24
To be presented in London next week!
https://doi.org/10.1145/3629526.3645034 (not yet active)

2309.07002v2 [cs.NE] 5 Feb 2024
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ABSTRACT

The di 1 data can have

on the efficacy of hardware caches and, by extension, the perfor-

mance of applications. Common multi-dimensional layouts include

the canonical row-major and column-major layouts as well as the

Morton curve layout. In this paper, we describe how the Morton lay-

out can be generalized to a very large family of multi-dimensional

data layouts with widely varying performance characteristics. We

posit that this design space can be efficiently explored using a com-
n genetic algorith

il y ch

between application requirements and hardware design requires
» array layouts: nj

which translate multi-dimensional indices into one-dimensional
‘memory addresses,

Although array layouts do not impact the functional properties
of programs, choosing a suitable layout can significantly impact
application performance in modern processors with complex cache
hierarchies [48). Exploiting these caches is of critical importan
to achieving high performance in all but purely compute-bound

licat

binatorial " I
“To this end, we propose a chromosomal representation for such
Layouts as well as a methodology for estimating the fitness of array
layouts using cache simulation. We show that our fitness function
correlates to kernel running time in real hardware, and that our
evolutionary strategy allows us to find candidates with favorable
simulated cache properties in four out of the eight real-world ap-
plications under consideration in a small number of generations
Finally, we demonstrate that the array layouts found using our
evolutionary method perform well not only in simulated environ-
ments but that they can effect significant performance gains—up to
a factor ten in extreme cases—in real hardware.

CCS CONCEPTS
« Software and its engineering — Software performance; «

of computing — C .
Information systems — Data layout.

KEYWORDS
Morton curve, Z-order curve, space-flling curves, array layout,
multi-dimensional data, evolutionary algorithms, caching, locality

1 INTRODUCTION

Structured multi

imensional data are ubiquitous in high-perfor-
mance computing [9): three-dimensional fluid simulations, dense

and spatial—in memory. Kernels often exhibit locality in multiple
dimensions, and a well-chosen artay layout maximizes the degree to

Tocality that caches are designed to exploit; as a result, that layout
increases the efficacy of hardware caching and—by extension—the
performance of an application.

Data in two-dimensions is commonly Taid out in row-major order
(shown in Figure 2a for an 8 8 array) or column-major order (Fig-
ure 21) which provide good locality of access in a single dimension,
but poor locality in all others. Thankfully, the design space for data
orderings—in two dimensions or more—extends far beyond these
canonical layouts: the Morton layout (Figure 20), for example, is
a layout based on a space-filling curve which provides balanced
Tocality bety [46, 62]. Our work expl
family of data layouts which generalize the Morton order, and allow
us to carefully tune the cache behavior in multiple dimensions to
match a given application.

ign space of the aforementioned family of data layouts
is dauntingly large; indeed, the number of possible layout for ar-
rays at scales applicable to real-world problems is so large that
it renders exhaustive search infeasible. In order to find suitable
array layouts in tractable amounts of time, we propose to employ
genetic algorithms—heuristics known to be able to efficiently find
high-quality solutions in large search spaces [35]. To this end, we
design a chromosomal representation of Morton-like array layouts,

0

pl

aswellasa at uses cache simulation to estimate

linear i
of applications which rely on

arrays. In spite of the importance of such applications, how
most modern computer systems have one-dimensional memories:
from the perspective of the programmer, memory is nothing more
than a very large one-dimensional array of bytes. This discrepancy

“Also wih CERN.

I individual array layouts. Finally, we evaluate
our evolutionary strategy and the array layouts it discovers.
In short, our paper makes the following contributions:

© We characterize the design space given by a generalization
of the Morton array layout, and we show that that the size



https://doi.org/10.1145/3629526.3645034

How can the effects of thread
imbalance in SIMT workloads
be modelled and how can
they be mitigated?



Research - Thread Imbalance - Amuse Bouche

e We know we cannot assign one event to one 1000
thread: lockstep execution 750 -
e Turnsout we also cannot assign one module g .
to one thread: too imbalanced =
e We will need fundamentally different 250 1
algorithms for clustering : . : .
e But can we predict what will work? 0 2000 4000 6000 8000 10000 12000

Module ind
o And can we use the graph on the right? odule Index



A lot of our kernels are imbalanced: different

threads execute different amounts of work
o Different cluster sizes
o  Different branching factors

This is not a problem on CPUs, but strongly
impacts GPU performance

Can be mitigated using thread coarsening or
thread refinement

But what is the performance impact of these
techniques?

Research - Thread Imbalance
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(a) Per-thread granularity: each thread in a thread group processes a

single unit of work.
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(b) Intermediate granularity: threads in a thread group form sub-

groups, each processing a single unit of work.
wo

to t1 t2 13 lg ts te t7 tg to tip t11 t12 t13 t14 lis
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(c) Per-group granularity: all threads in a thread group process a
single unit of work.



Research - Thread Imbalance

e We propose a statistical model that can infer the
overhead of SIMT execution

e Metric for “how suitable for GPU execution is this
workload”

e Usesonly distribution of thread load: no hardware
details, etc.

e Allows early evaluation of feasibility of different
parallelism strategies!

" I "] ' Modelled — |
= Simulated —
B - Measured — ]|
1 1.1 1.2 1.3 1.4 1.5 1.6 L
(a) B(40,0.5) with 16 parallel units of work.
LT T T T T T Modelled —
L Simulated —
Measured — |
1 15 2 25 3 35 4 45 5 55 6
(b) Geo(0.05) with 8 parallel units of work.
+ ' ' : I " Modelled —
+ Simulated — -
L Measured — -
L L Il 1 1 1 1
1 11 12 13 14 15 16 1.7 1.8 1.9
(c) Pois(30) with 32 parallel units of work.
S T T Modelled —
Simulated —
Measured — |
I -
1 1.05 1.1 115 12 125 13 135 14
(d) U(20,40) with 2 parallel units of work.
ke I : I I I Modelled —
Simulated —
i Measured — |

1 12 14 16 18 2 22 24 26 28
(e) NB(5,0.3) with 4 parallel units of work.



Research - Thread Imbalance

This work was published in MASCOTS’22
Which was nice and also in Nice
https://doi.org/10.1109/MASCOTS56607.2022.00026

Modelling Performance Loss due to Thread
Imbalance in Stochastic Variable-Length SIMT
Workloads
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dosigaing algorithns fur single-ostruction
‘maltiple-thread (SIMT) devices such as general purpose graphics
processing units (GPGPUS), thread imbalance is an important
performance considerat d imbalance can emerge in
Herative applications rhere workloads ars of variable length,
e thre:
threads bal
influences the design space of algorithms—particularly in terms
of procesing granlasity—but we lack modes lo quanily i
impact on appl rformanc his paper, we present
sl ol Tor quantifying the perfnrmzmz loss due to
thread imbalance for iterative SIMT applications with stochastic,
variablelngh workloads. Our el s designed o apersts
ith minis i ails of the

gorithm, relying solely on an understanding of the p)nlmhl ity
disribution of the lengthe af the workloads, We yiidate our
i arlo

extracted from real hardware, our model maintains a high degree
of accuracy, predicting mean performance loss within a margin
of 2%.
Index Terms—SIMT, imbalance, performance modelling

1. INTRODUCTION

As the landscape of mgn performance colnp\mng has

where the execution paths of threads diverge will cause some
of the threads to be idle. If care is not taken to minimise thread
divergence in algorithms designed to run on SIMT devices, it
can severely degrade performance [3]

Thread divergence emerges not only in situations with
conditional branches in the common if-else sense. but it
an also arise in iterative processes in the form of rhread
imbalance. When the number of ilerations of a loop varies
between threads, the result is divergence: threads will be
idle until the thread with the largest amount of work has
performed the necessary number of iterations. Throughout this
paper, we refer to workloads where the number of iterations
is not fixed and may differ between threads as variable-length
workloads. When the number of iterations is described by
some probabilistic process, we refer to them as stochastic
workloads. While it is well understood that thread imbalance
in variable-length workloads is detrimental to the performance
of SIMT devices [3]. [4]. we are unaware of any quantitative
models that predict exactly how much performance is lost.

The question how we' can model the impact of thread
imbalance in stochastic variable-length workloads is the core
focus of this paper. With this work, we are the first to design
and implement an accurate statistical model for the expected

evolved over recent yea
(SIMT) ally in the form of gei

graphics processing units (GPGPUS)—have bu.oms. pupum
for high-performance computation in many domains [1]. By
sacrificing the independence of individual processing cores,
SIMT processors are able to pack significantly more proc
ing cores. and thus provide much more raw processing power,
compared to their traditional multiple-instruction multiple-data
(MIMD) counterparts [2].

However, nol every conceivable computational workload
can be efficiently handed off to an SIMT device. The increased
raw processing power of these devices comes at the cost of
reduced flexibility, and algorithms must be carefully designed
to run efficiently on SIMT devices, lest their computational

rowess goes 10 waste. One important consideration when
programming SIMT devices is the concept of thread di-
vergence. In an SIMT device, a group of threads can—by
definition—perform only a single, common instruction at a
time: colloquially, these threads run in lockstep. Thus, cases

loss of a given application, given only that it is
an iterative process, that it is executed on an SIMT device, and
that the number of iterations required to complete the process
follows a known (albeit arbitrarily complex) distribution. We
validate our model using empirical measurements gathered
using a dedicated benchmark running on an NVIDIA GPU.
The results of this validation show that our model agrees with
simulated data with a relative error of less than 0.1%, and that
it agrees with measurements taken on a real device within 2%.

Our accurate model can help motivate more precisely the
design process of (future) SIMT applications—in particular in
terms of processing granularity—in domains where stochastic
iterative processes are common, such as machine learing (51,
cryptography [6]. graph processing [7], and scientific comput-
ing [8]. The importance of thread imbalance and granularity is
further supported by our own results, which show (in Table 1)
that thread imbalance in SIMT devices can lead to execution
that is nearly four times slower if thread granularity is not
chosen carefully.



https://doi.org/10.1109/MASCOTS56607.2022.00026

How do the extra-functional
properties of novel track
reconstruction algorithms
compare to

state-of-the-art solutions?



traccc - GPU Tracking Demonstrator

e Now: back to the application under study

e We have developed a track reconstruction
chain for massively parallel devices

e Integrates novel algorithms

e Tracking on TrackML and ODD-like detectors
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traccc - GPU Tracking Demonstrator

Track Finding
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ACTS Project - Subprojects

R&D consists of many subprojects for
HEP and HPC in general

traccc: tracking demonstrator
algebra-plugins: linear algebra
detray: detector description
vecmem: memory management

covfie: vector field storage
o  Plasma physics at HZDR

ACTS Project




Key Point — Reproducibility

e Aim:to write software and develop methods
that can be used and improved on
o  LHC lifetime: 17 more years
e Trytoavoid “PhDware”: software that
becomes unusable after the end of the PhD
e Artifact evaluation tracks take extra effort
but reward handsomely
o  Nice stickers

o Insome cases taken into account for reviews,
rebuttals, etc.

e Also served on AE committees for SC, CGO,
ICPE, and ICPP

Source: ACM



Results

e Preliminary results on TrackML data show
that our GPU-based solutions work well

e Outperform similarly priced CPUs at higher
pile-up values

e Factor ~10 gain in throughput

Throughput (events/s)

Maximum throughput

103 1

102 5

—4—= NVIDIA A100
== NVIDIA A2
=4« NVIDIA RTX A6000
+- - @+ AMD Radeon RX6700XT
== AMD Threadripper 3970X

O
&g
.

(1558
.
.
e
.
.
.
.
-
.
.
.
.
.
.
b
.

SIO 100 150 200 250 300
ttbar pile-up

Source: Guilherme Metelo Rita de Almeida




Outstanding Challenges

e So fartested only on simple geometries: how do we integrate e.g. ITk

e Combinatorial Kalman Filter: important step with high combinatorics
o  How do we distribute branches over threads?

e Integration into Athena is ongoing work

e How to schedule and place algorithms?

o  GPUs have separate memories: transfers are not free



Research - Throughput Models

e Qurschedulingis an open problem, but can
we somehow estimate the throughput of our
task graph on heterogeneous systems...

e ...usingonly the throughputs of the
individual kernels?

e We propose that we can create an optimistic
upper bound for this based on work in the
data flow community

e Using linear programming we can solve a
resource-constrained maximum flow

problem!

da (k1) da(k2)
d2(A) 1 d2(B) d2(C)
&= S IS
v N v N v "N
Y S s S Y =
~ A ~ A Wi A
ERERS CRERS CRERS
di (k1) di(kz2)
di(A) di(B) 1 d1(C)
maximise Yecg- () Xef(€)
subject to Vo € T\ {s,t} : YecE+(v) Xef(€) = XecE- (v) Xef(€)

Vee E:0<x,<1
VrEDUI:OSZeEQ(,.)xeﬁl



Conclusions

e ATLAS needs aggressive R&D to tackle high-

1 compute challenges

e Massively parallel track reconstruction

under developmentin ACTS

e Despiteirregular workloads, we can exploit

GPUs well in TrackML and ODD

e Performance is very competitive at = 100 The ACTS project

Bi-weekly R&D meeting
https://github.com/acts-project/ https://indico.cern.ch/category/16958/

e Complex geometries, scheduling, and

placement remain open questions


https://github.com/acts-project/
https://indico.cern.ch/category/16958/

