GW230529: identifying objects in the lower mass gap

Thibeau Wouters

t.r.i.wouters@uu.nl

Jamboree 2024

Table of Contents

Introduction

2 Identifying GW230529's primary

GW230529

Credit: Shanika Galaudage

Table of Contents

Introduction

2 Identifying GW230529's primary

Identifying GW230529's primary

What information can we get from GW230529?

- Tidal information? uninformative
- Electromagnetic counterpart? not observed
- SNR ≈ 11 : hard
- Masses? Well-measured!

Identifying GW230529's primary

What information can we get from GW230529?

- Tidal information? uninformative
- Electromagnetic counterpart? not observed
- SNR ≈ 11 : hard
- Masses? Well-measured!

Neutron stars have a maximal mass $M_{\rm max}$, which depends on the (unknown) equation of state and spin of the neutron star.

Approach: compare the mass distribution with expected upper bound

Equation of state

- Microscopically: nuclear interactions, $P(\epsilon, \rho)$,...
- Macroscopically: $M(R) \rightarrow M_{TOV}$: maximum mass non-spinning neutron star
- Stars with spin χ : $M_{\text{max}}(\text{EOS}, \chi) \lesssim 1.3 \text{ M}_{\text{TOV}}$.

Current equation of state constraints: NMMA

NMMA compiled a set of constraints on the equation of state:

- Nuclear theory and experiments
- Radio observations pulsars, NICER, bursters, X-ray binaries
- GW170817, EM counterparts, postmerger remnant

Current equation of state constraints: NMMA

NMMA compiled a set of constraints on the equation of state:

- Nuclear theory and experiments
- Radio observations pulsars, NICER, bursters, X-ray binaries
- GW170817, EM counterparts, postmerger remnant

Result: M_{TOV} posterior

Identifying GW230529's primary: results

P(NS): probability of primary being a neutron star

Posterior set	P(NS)		
default	$(2.9 \pm 0.4)\%$		
population-informed	$(8.8 \pm 2.8)\%$		

Identifying GW230529's primary: results

P(NS): probability of primary being a neutron star

Posterior set	P(NS)
default	$(2.9 \pm 0.4)\%$
population-informed	$(8.8 \pm 2.8)\%$

Without spin information, *i.e.*, $M_{\text{max}} = M_{\text{TOV}}$:

default	$\sim 1.63\%$
population-informed	~ 8.26%

NMMA V

With spin information, *i.e.*, $M_{\text{max}} = M_{\text{max}}(\text{EOS}, \chi)$:

default	~ 3.96%
population-informed	$\sim 17.96\%$

Table of Contents

Introduction

2 Identifying GW230529's primary

- GW230529: GW event with a component in the lower mass gap
- Hard to identify the primary: no electromagnetic counterpart, low SNR,...
- Can use observational constraints on maximum mass of neutron stars
- NMMA: Extensive set of constraints on M_{max}
- Primary object is a black hole (probability 82.04%)

P(NS) definition

$$P(NS) = \sum_{EOS} P(EOS|d) \int_0^{M_{TOV}(EOS)} dm \ P(m|O)$$

$$= \int dM_{TOV} \int_0^{M_{TOV}} dm \ P(M_{TOV}|d) P(m|O)$$

$$= \int_0^{\infty} d\Delta m \int_{-\infty}^{\infty} dm \ P(m + \Delta m|d) P(m|O).$$

Equation of state constraint sets

Table 1: Overview on the constraints contained within the three different constraint sets.

Set	Label	Description
High confidence	1	Chiral EFT, pQCD, heavy radio pulsars, NICER J0740+6620, NICER J0030+0451, (NICER J0437-4715), GW170817
More vigorous	2	Set 1, Black Widow J0952-0607, heavy ion-collisions, qLMXBs, GW170817+KN+GRB afterglow, CREX, PREX-II, Burster 4U 1702-429, Burster J1808.8-3658, GW170817 postmerger
Aggressive	3	Same as set 2, but for the remnant of GW170817 a hypermassive neutron star above the Kepler limit is assumed

Population informed posterior

3

TOV mass posterior with set 3 ("Aggressive")

All probabilities for GW230529 primary being a NS

		spin	1	2	3
GW230529	default	×	1.63%	1.37%	0.02%
		✓	3.96%	3.97%	0.82%
	PDB	×	8.26%	6.98%	0.38%
		✓	17.96%	17.83%	1.79%