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NEW WINDOW TO THE UNIVERSE!
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A more complete understanding of the Universe! 3
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Without these models we will:

o  Miss signals
o  Misestimate properties of sources

o  Misinterpret deviations from General Relativity
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NUMERICAL SOLUTIONS
EINSTEIN EQUATIONS

SEMI-ANALYTICAL
APPROXIMATIONS TO THE
TWO-BODY PROBLEM

Numerical relativity
simulations of binary
black holes with
SURF HPC grant of
8.7¢6 SBUs

Ansatz based on

theoretical p.redictions \ PHENOMENOLOGICAL /
fit to numerical

solutions MODELING FRAMEWORK
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Waveform model development

Efficient and accurate model for gravitational waves (GWs)
from generic binary black holes (BBHs)

GRAVITATIONAL WAVE MERGER DETECTIONS

'

Pipelines development

Algorithms to detect, estimate parameters and test General

Relativity with GW signals

'

Observational results on open detector data

- Search for generic BBHs
- Measure eccentricity of binaries (origin)

- Test General Relativity
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RRRRRRRRRRR UNITS ARE SOLAR MASSES

1 SOLAR MASS = 1.989 x 10%%kg
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IMPACT

Short term Origin of binary black holes The Gravitational Wave Spectrum
Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei

Fundamental physics
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o e . . &) Compact Binaries in our
Maximize science output of GW experiments E Galaxy & beyond
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(%] Compact objects
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Eccentric binaries — Science case of Einstein
Telescope, LISA, ...
Credit: NASA Goddard Space Flight Center



