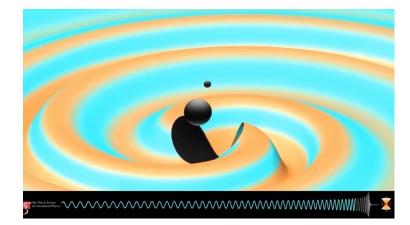
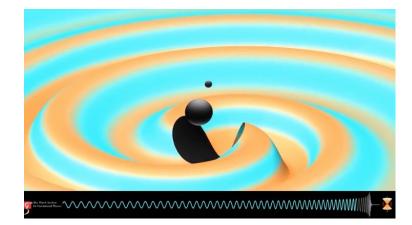


Gravitational waves from compact binary mergers

Antoni Ramos-Buades and Maria Haney

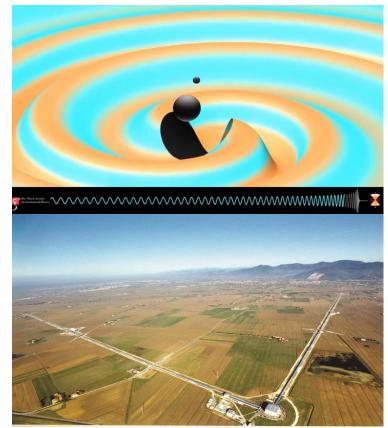
MSc and BSc students: Suzanne Lexmond, Jord Muffels, Amin Rouan Serik, Pieter Oehlers



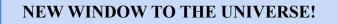

Gravitational waves group Nikhef Amsterdam

• Compact objects in binaries: neutron stars, **black holes,** ...

- Compact objects in binaries: neutron stars, **black holes,** ...
- Orbiting black holes emit gravitational waves

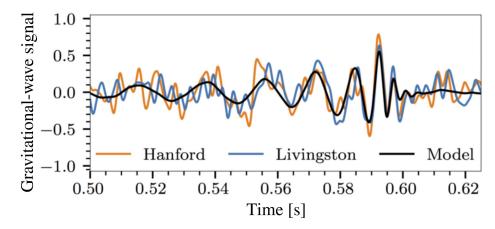


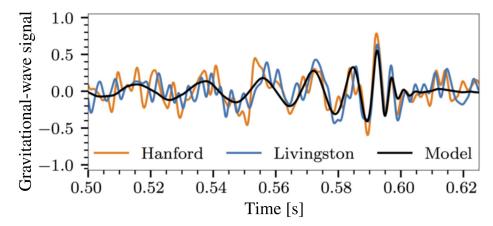
- Compact objects in binaries: neutron stars, **black holes,** ...
- Orbiting black holes emit gravitational waves
- Gravitational-wave observations with **ground-based detectors**: LIGO-Virgo-KAGRA


Credit: SXS and Virgo Collaborations

- Compact objects in binaries: neutron stars, **black holes,** ...
- Orbiting black holes emit gravitational waves
- Gravitational-wave observations with ground-based detectors: LIGO-Virgo-KAGRA
- 2015: First observation of gravitational waves from binary black holes

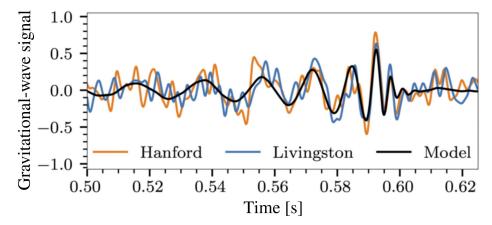
Credit: SXS and Virgo Collaborations


- Compact objects in binaries: neutron stars, **black holes,** ...
- Orbiting black holes emit gravitational waves
- Gravitational-wave observations with **ground-based detectors**: LIGO-Virgo-KAGRA
- 2015: First observation of gravitational waves from binary black holes


Credit: SXS and Virgo Collaborations

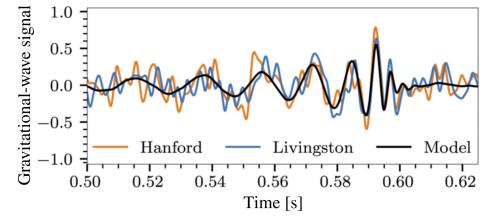
• Gravitational waves (GWs) carry information about sources

• Gravitational waves (GWs) carry information about sources


• Models of GWs **CRUCIAL** in GW astronomy

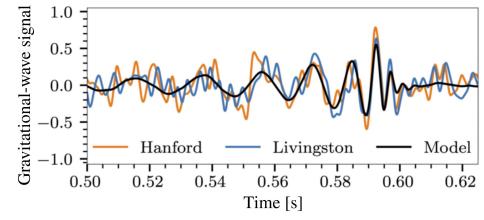
• Gravitational waves (GWs) carry information about sources

• Models of GWs **CRUCIAL** in GW astronomy


• Accurate and efficient models enable:

• Gravitational waves (GWs) carry information about sources

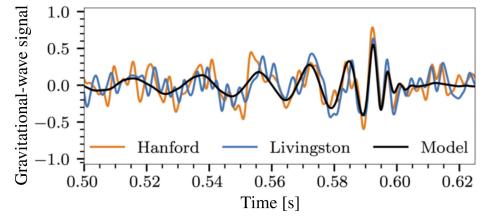
• Models of GWs **CRUCIAL** in GW astronomy


- Accurate and efficient models enable:
 - **Detection** of gravitational waves

• Gravitational waves (GWs) carry information about sources

• Models of GWs **CRUCIAL** in GW astronomy

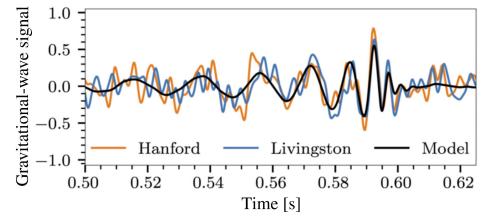
- Accurate and efficient models enable:
 - **Detection** of gravitational waves


Astronomy

• Gravitational waves (GWs) carry information about sources

• Models of GWs **CRUCIAL** in GW astronomy

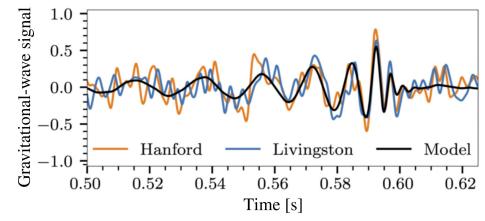
- **Detection** of gravitational waves
- Estimate source properties: masses, spins, ...


Astronomy

• Gravitational waves (GWs) carry information about sources

• Models of GWs **CRUCIAL** in GW astronomy

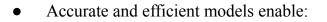
- **Detection** of gravitational waves
- Estimate source properties: masses, spins, ...


Astrophysics

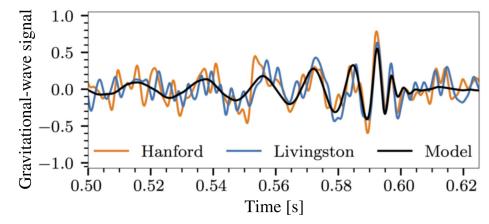
• Gravitational waves (GWs) carry information about sources

• Models of GWs **CRUCIAL** in GW astronomy

- **Detection** of gravitational waves
- Estimate source properties: masses, spins, ...
- Measure the **expansion of the Universe**



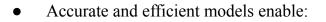
Astronomy


Astrophysics

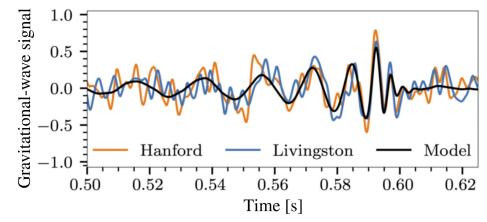
• Gravitational waves (GWs) carry information about sources

• Models of GWs **CRUCIAL** in GW astronomy

- **Detection** of gravitational waves
- Estimate source properties: masses, spins, ...
- Measure the **expansion of the Universe**



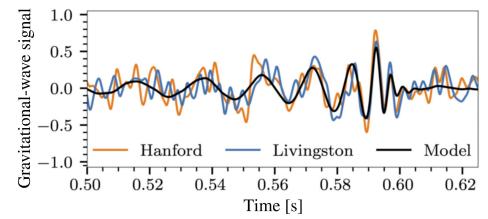
Astronomy


- Astrophysics
- Cosmology

• Gravitational waves (GWs) carry information about sources

• Models of GWs **CRUCIAL** in GW astronomy

- **Detection** of gravitational waves
- Estimate source properties: masses, spins, ...
- Measure the **expansion of the Universe**
- Test validity of General Relativity


Astronomy

- Astrophysics
- Cosmology

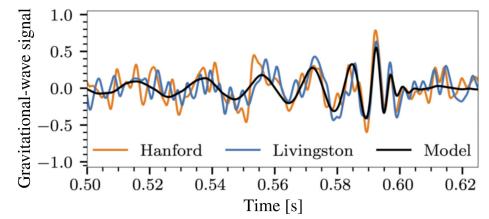
• Gravitational waves (GWs) carry information about sources

• Models of GWs **CRUCIAL** in GW astronomy

- Accurate and efficient models enable:
 - **Detection** of gravitational waves
 - Estimate source properties: masses, spins, ...
 - Measure the **expansion of the Universe**
 - Test validity of General Relativity

Astronomy

Astrophysics


Cosmology

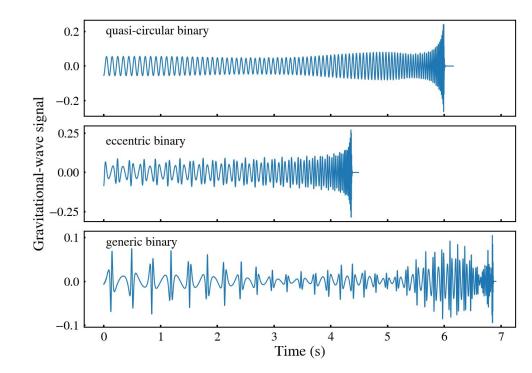
Fundamental physics

• Gravitational waves (GWs) carry information about sources

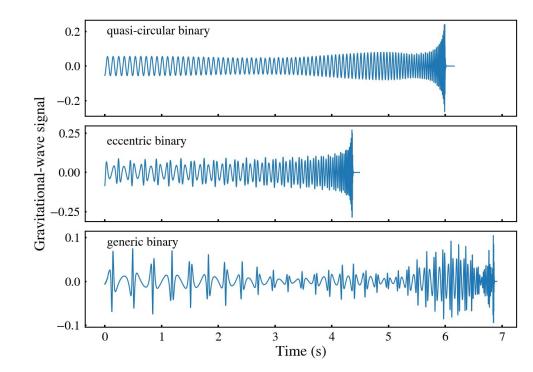
• Models of GWs **CRUCIAL** in GW astronomy

- Accurate and efficient models enable:
 - **Detection** of gravitational waves
 - Estimate source properties: masses, spins, ...
 - Measure the **expansion of the Universe**
 - Test validity of General Relativity

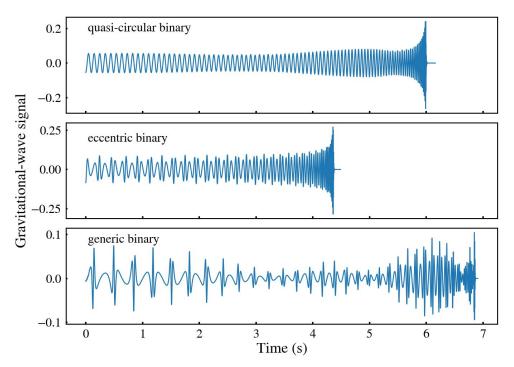
Astronomy

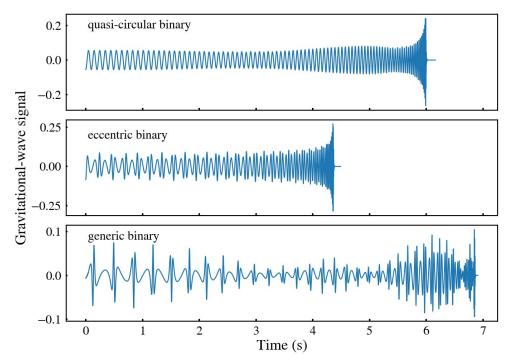

Astrophysics

Cosmology

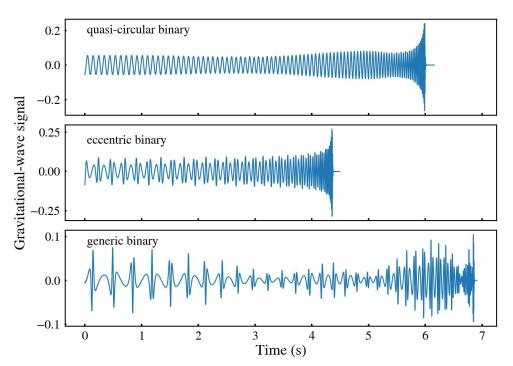

Fundamental physics

A more complete understanding of the Universe!

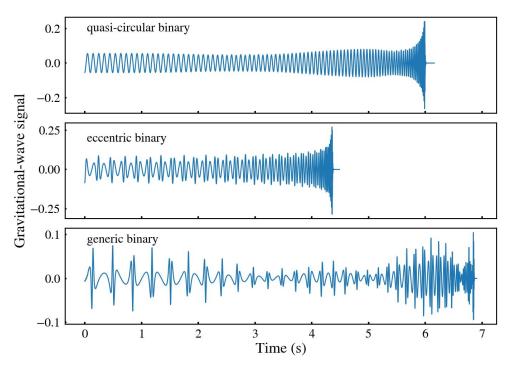

• Black hole binaries can be formed in generic configurations


- Black hole binaries can be formed in generic configurations
- Current gravitational-wave templates assume quasi-circular orbits

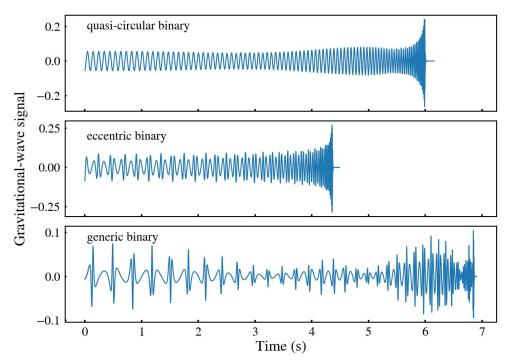
- Black hole binaries can be formed in generic configurations
- Current gravitational-wave templates **assume quasi-circular orbits**
- Generic = elliptical orbits + arbitrary spin orientations



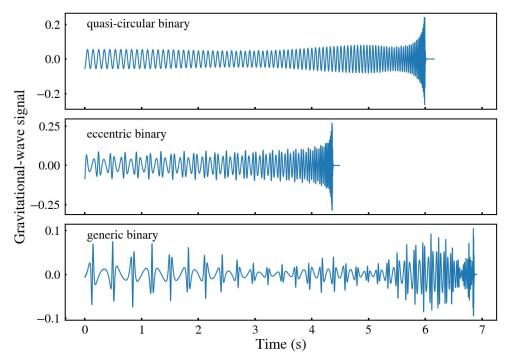
- Black hole binaries can be formed in generic configurations
- Current gravitational-wave templates **assume quasi-circular orbits**
- Generic = elliptical orbits + arbitrary spin orientations
- Models to analyse generic binaries still missing!

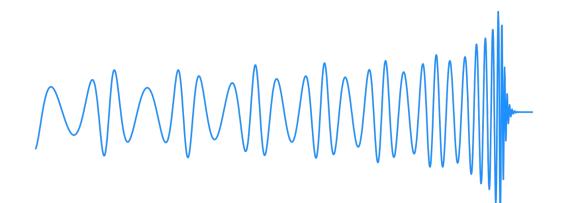

- Black hole binaries can be formed in generic configurations
- Current gravitational-wave templates **assume quasi-circular orbits**
- Generic = elliptical orbits + arbitrary spin orientations
- Models to analyse generic binaries still missing!

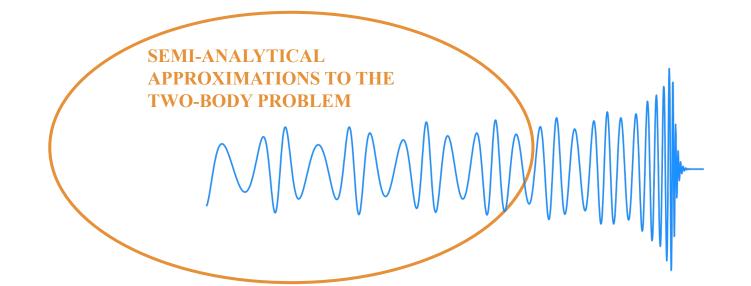
• Without these models we will:

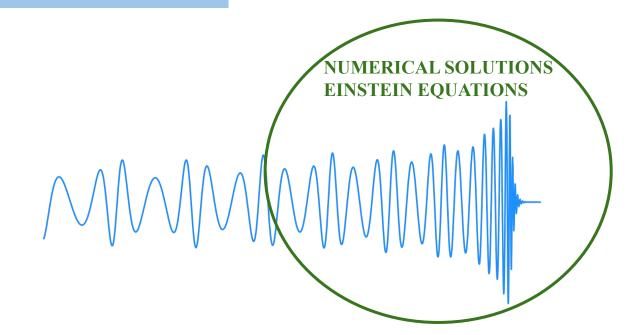

- Black hole binaries can be formed in generic configurations
- Current gravitational-wave templates **assume quasi-circular orbits**
- Generic = elliptical orbits + arbitrary spin orientations
- Models to analyse generic binaries still missing!

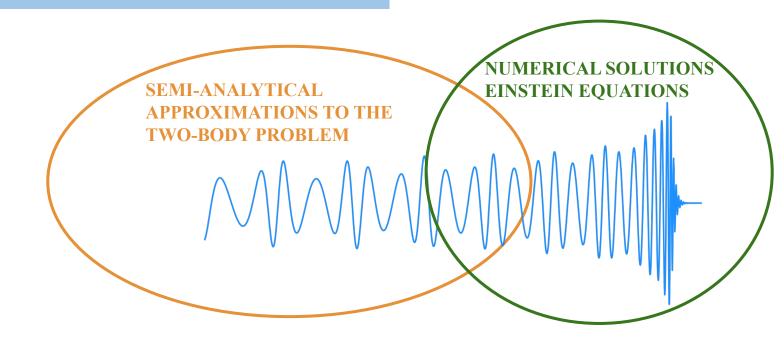
- Without these models we will:
 - Miss signals

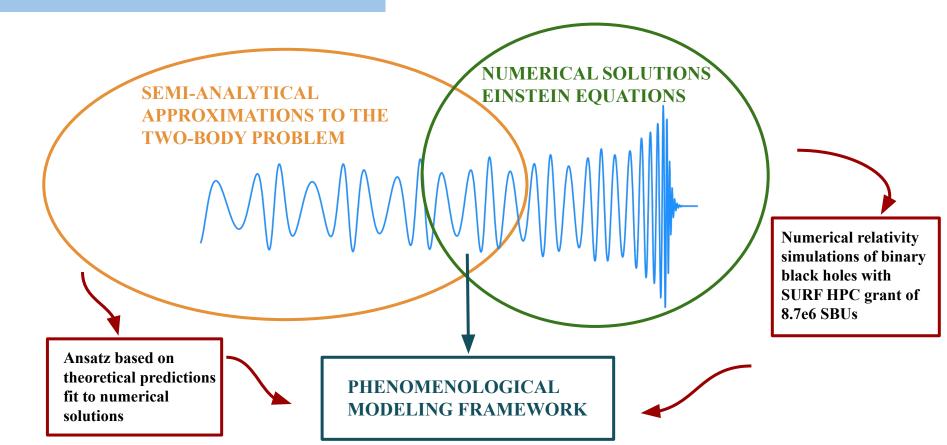

- Black hole binaries can be formed in generic configurations
- Current gravitational-wave templates **assume quasi-circular orbits**
- Generic = elliptical orbits + arbitrary spin orientations
- Models to analyse generic binaries still missing!


- Without these models we will:
 - Miss signals
 - Misestimate properties of sources




- Black hole binaries can be formed in generic configurations
- Current gravitational-wave templates **assume quasi-circular orbits**
- Generic = elliptical orbits + arbitrary spin orientations
- Models to analyse generic binaries still missing!


- Without these models we will:
 - Miss signals
 - Misestimate properties of sources
 - Misinterpret deviations from General Relativity



RESEARCH PROJECT

Waveform model development

Efficient and accurate model for gravitational waves (GWs) from **generic binary black holes** (BBHs)

RESEARCH PROJECT

Waveform model development

Efficient and accurate model for gravitational waves (GWs) from **generic binary black holes** (BBHs)

Pipelines development

Algorithms to detect, estimate parameters and test General

Relativity with GW signals

RESEARCH PROJECT

Waveform model development

Efficient and accurate model for gravitational waves (GWs) from **generic binary black holes** (BBHs)

Pipelines development

Algorithms to detect, estimate parameters and test General

Relativity with GW signals

Observational results on open detector data

- Search for generic BBHs
- Measure eccentricity of binaries (origin)
- Test General Relativity

GRAVITATIONAL WAVE MERGER DETECTIONS

OBSERVING RUN ————————————————————————————————————				\longrightarrow SINCE 2015
01 2015-2016	02 2016-2017			03a+b 2019-2020
36 31 23 14 14 14 56 56 56 56 56 56 56 56 56 56 56 56 56	• •	а 34 35 24 31 25 80 56 53 60/170809 60/170814	1.5 1.3 35 27 40 <2.8 60 GW170817 GW170818 GW	29 55 55 105 6W190403 6W190408
	2 41 32 2 1.4 107 70 3.2 0 1.4 107 50/190421 00/199425 00/1	• • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * *	25 59 101 54 59 59 101 156 69 156 69 156 69 156 69 156 69 156
	8 57 36 35 24 54 87 56 6W196420 6W196438 6W	41 67 38 12 84 90 99 99 199701 6W199706 6W190707	18 13 37 21 13 30 55 GW190708 GW190719 GW	7.8 12 6.4 38 29 20 17 6.4 99720 0W190725 0W190727
	76 26 5	26 24 10 44 36 55 33 76 09828 CW19828 CW190910		2.1 8.9 5 21 16 11 13 35 19917 CW19972A CW199725
	6 12 7.9 11 7.7 65 19 18 18 GW191103 GW191105 GW1	47 29 5.9 12 83 107 34 20 191169 6W191113 6W191126		19 12 8.2 25 18 45 19 41 91204 GW191204 GW191215
12 7.7 31 1.2 45 19 32 76 GW191216 GW191219 GW191225	5 49 37 9 1.9 36 82 11 ownsist290 pw259105 own	28 5.9 1.4 42 33 61 7.2 71 200112 GW2200115 GW2200128	34 29 10 7.3 38 60 17 6w280129 6w280202 6w2	27 51 12 36 27 53 61 60 50206 60 60 60
27 78 62 GW200210 GW200216 GW202021		33 19 14 38 20 69 32 56 200224 ewzeezes ewzeezes	42 47	28 13 7.8 34 14 59 20 53 50311 600200316 600200322
KEY		Note that the mass estimates shown here	to not include uscattalizing	
BLACK HOLE PRIMARY MASS FINAL MASS SUM157215	VEUTRON STAR UNITS ARE SOLI UNITS ARE SOLI SECONDARY MASS 1 SOLAR MASS = 1 DATE	AR MASSES which is why the final mass is sometime primary and secondary masses. In actual than the primary plus the secondary mass	I larger than the sum of the ity, the final mass is smaller a. Seeholds for debection. Straphysical of at least 59%,	MIRGO

Short term

Short term **Origin of binary black holes**

Short term Origin of binary black holes

Fundamental physics

Short term Origin of binary black holes

Fundamental physics

Maximize science output of GW experiments

Short term Origin of binary black holes

Fundamental physics

Maximize science output of GW experiments

Long term

Short term Origin of binary black holes

Fundamental physics

Maximize science output of GW experiments

Long term

Data analysis techniques for upcoming observing runs of LIGO-Virgo-KAGRA

Short term Origin of binary black holes

Fundamental physics

Maximize science output of GW experiments

Long term

Data analysis techniques for upcoming observing runs of LIGO-Virgo-KAGRA

Modular pipeline for the broader community

Short term	Origin of binary black holes	The Gravitational Wave Spectrum		
	Fundamental physics	Binary Supermassive Black Holes in galactic nuclei		
	Maximize science output of GW experiments	Compact Binaries in our Galaxy & beyond Compact objects		
		wave period age of universe years hours sec ms		
Long term	Data analysis techniques for upcoming observing runs of LIGO-Virgo-KAGRA	log(frequency) -16 -14 -12 -10 -8 -6 -4 -2 0 +2 Cosmic microwave Pulsar Timing Space Terrestrial background interferometers		
	Modular pipeline for the broader community	background polarization		
	Eccentric binaries → Science case of Einstein Telescope, LISA,	Credit: NASA Goddard Space Flight Center		

Rotating NS, Supernovae

Terrestrial interferometers