

ATLAS Pamela Ferrari

THE ATLAS GROUP

+ 9 MSc Students: Duncan, Karel, Jasper, Dorian, Peter, Marcello, Saskia, Bram, Sacha.

P. Ferrari on behalf of the ATLAS Nikhef group

Tristan

Marion

Dylan

Oliver Geoffrey Matous

VO

Zef

Andrea Marten Osama Jordy

Bryan Walter Petja

ATLAS ROLES IN 2023-2024

PHYSICS

Physics coordinator: P. Ferrari Exotics group convener: F. Dias Top-quark mass/properties convener: C. Nellist H→WW convener: R. Hayes Statistics committee: L. Brenner (Chair), W. Verkerke

COLLABORATION

CB Chair Advisory Group: W. Verkerke (12/23), F. Filthaut Early Career Scientist Board: H. Arnold Diversity and Inclusion committee: F. Dias

DETECTOR

ITk Strip Global Structure Activity Coordinator: M. Vreeswijk ITk Strip Project Engeneer:M. Vreeswijk HGTD Institute Board chair+Electronics Coord.: F. Filthaut HGTD DAQ coordinator: M. Wu

Nik hef

NIKHEF ATLAS PHYSICS AMBITIONS

LHC Run 3 succesfully ongoing

HIGGS PHYSICS

Huge involvement of Nikhef group in almost all aspects of Higgs physics, many leading contributions

P. Ferrari on behalf of the ATLAS Nikhef group

kt=Higgs boson couplings to top quarks $k\lambda$ =Higgs Self coupling

Higgs boson self-coupling constraints from single and double-Higgs production

VECTOR BOSONS, TOP QUARKS, SEARCHES

P. Ferrari on behalf of the ATLAS Nikhef group

.

Heavy Majorana Neutrino search

Previous limits only up to 1 TeV

P. Ferrari on behalf of the ATLAS Nikhef group

VECTOR BOSONS, TOP QUARKS, SEARCHES

VECTOR BOSONS, TOP QUARKS, SEARCHES

Run 3 ttbar x-section

test of Performances: b-tagging

P. Ferrari on behalf of the ATLAS Nikhef group

Magnetic Monopoles: "one of the safest bets about physics not yet seen" (Polchinski)

One of tightest limits yet on their production rate

NIKHEF: FULL-CHAIN INVOLVEMENT, FROM DETECTOR TO PHYSICS

IBL detector (crucial for b-jet ID)

CO2 cooling **Front-end readout chips**

P. Ferrari on behalf of the ATLAS Nikhef group

b-jet identification algorithms

H(H)→bb(bb/ττ/γγ) analysis

Boosted Higgs tagger taskforce

Most stringent limits on di-Higgs production rates to date

NIKHEF: FULL-CHAIN INVOLVEMENT, FROM DETECTOR TO PHYSICS

IBL detector (crucial for b-jet ID)

CO2 cooling **Front-end readout chips**

P. Ferrari on behalf of the ATLAS Nikhef group

b-jet identification algorithms

H(H)→bb(bb/ττ/γγ) analysis

Boosted Higgs tagger taskforce

Most stringent limits on di-Higgs production rates to date

RUN 3: COMMISSIONING

Muon New Small Wheels, new for Run-3

Alignment & track reconstruction

P. Ferrari on behalf of the ATLAS Nikhef group

Phase-1 FELIX Trigger & DAQ system for NSW, L1Calo

progress with aligning muon spectrometer for Run 3! (NSW & MDT)

strong bias in run 3 alignment corrected to be now comparable to run 2

Nik hef

MDT DCS WORK

Jochem

MDT Detector Control System: ELMBs inside MDMs are not radiation-hard enough for Run4 eYETS23/24: Replaced 135/1170 ELMBs

All need to be replaced until the end of LS3

Tristan du Pree Project Leader

THE HIGH LUMINOSITY ERA

P. Ferrari on behalf of the ATLAS Nikhef group

High-Lumi era: 10x more data than Run1+2+3, delivered at 5x the rate Need new detectors & DAQ that can cope with track density & radiation

HL-LHC: WE NEED NEW DETECTORS

P. Ferrari on behalf of the ATLAS Nikhef group

ITK: all-new all-silicon detector (2028) Much improved forward coverage ($|\eta| < 4$) Very high resolution (50x more channels)

HL-LHC: WE NEED NEW DETECTORS (2028-2034)

P. Ferrari on behalf of the ATLAS Nikhef group

New forward detector 2.4 < $|\eta|$ < 4.0 High Granularity **Timing** detector: Ultra-precise timing measurement reduces 'pile-up' tracks by an order of magnitude

Initial version installed in 2028 Partial upgrades in 2034 & beyond

ATLAS-ITk project overview

@Nikhef: make two EndCap (EC) structures \rightarrow Insert petals to one EC Other EC to DESY (soon) \rightarrow Both ECs to CERN in 2026.

P. Ferrari on behalf of the ATLAS Nikhef group

Barrel 2.2.7.1: 4 cylinders with brackets for staves

ոտ 004Ի

staves

petals

Newest timeline for EC macro-assembly

EC2 for Nikhef

@Nikhef

EC1 for DESY

1) Assembly 2x

P. Ferrari on behalf of the ATLAS Nikhef group

NIKHEF TODAY

 Finished production BOTH Carbon Fibre End-Cap (EC) structures. Cooling services produced@nikhef and mostly installed + tested

P. Ferrari on behalf of the ATLAS Nikhef group

Quality Assurance and Control: 3D LASER MEASUREMENT

3D laser measurements

Global accuracy < 100um (target)

P. Ferrari on behalf of the ATLAS Nikhef group

measurement under load 2x nominal =250 kg

waterbags

deformation <100 um: Stiffer than what required.

Target for 2nd half 2024: gleanroom (CR) ready for petalization

Petal box

Thermal Enclosure around EC for coldtest –shown below--(in production)

> **Insertion Tower DESY delivered**

Petal storage in CR Q3 2024 Being designed

Platform just got installed

Petal reception cold-box. Being commisioned

Thermal enclosure. Nikhef deliverable

Dryair+ interface to EC

Coming months

Lukasz cooler Arrives Q2 2024

Petal pipe bender 2024 Q2 **Optimization takes time**

"Green cooler" for petal reception

Target for 2nd half 2024: cleanroom (CR) ready for petalization

Thermal Enclosure around EC for coldtest –shown below--(in production)

all parts of cleanroom are being delivered, designed or commissioned !

Thermal enclosure. Nikhef deliverable

Coming months

2024

the wide physics territory ahead of us. • Working at Full steam on HL-LHC detectors

- Vibrant physics program, focused on forefront research ready to explore
- Heavily involved in Muons software and in muon and b-jet performance

HL-LHC: WE NEED DETECTOR R&D Possibility to replace inner layer of ITk barrel pixel after 2035: Opportunity to add fast-timing detector layer

R&D also useful towards future collider detectors

P. Ferrari on behalf of the ATLAS Nikhef group

Technologically very challenging, no suitable existing technology,

arXiv:2305.16623

RUN 3 DETECTOR EVOLU FOR HL-LHC

arXiv:2305.16623

RUN 3 DETECTOR EVOL FOR HL-LHC

New LAr Calorimeter digital trigger electronic boards: towards HL-LHC runs to deal with high background rates

arXiv:2305.16623

RUN 3 DETECTOR EVOLU FOR HL-LHC

barrel toroid magnet

Trigger & data acquisition have upgraded hardware & software allowing the trigger to select events more efficiently & reduce background rates

endcap calorimeters

barrel electromagnetic calorimeter

New LAr Calorimeter digital trigger electronic boards: improved trigger granularity! towards HL-LHC runs to deal with high background rates

RUN 3 DETECTOR EVOL

Muon New Small Wheels to replace innermost forward Muon station to 1) improve Level 1 trigger

2) maintain good tracking in end-cap region

towards HL-LHC high luminosity and high background rates

Trigger And data acquisition systems have upgraded hardware ad software allowing the trigger to spot a wide range of collision events (with same acceptance)

endcap calorimeters

barrel electromagnetic calorimeter

New LAr Calorimeter digital trigger electronic boards: improved trigger granularity! towards HL-LHC high luminosity and high background rates

Preparation to ship EC1 to DESY ongoing

P. Ferrari on behalf of the ATLAS Nikhef group

Special "Superframe" designed by DESY used for petal insertion (EC vertical) and transport (EC horizontal).

This transport is the test-case final transport (fake petals and weight to mimic cable are added)

Nikhef performs FEA of EC structure during transport.

HL-LHC UPGRADE

ITK: All silicon, up to $|\eta| = 4$ strongly augmented tracking acceptance, 50x present channels \rightarrow to cope with high occupancy

HL-LHC UPGRADE

HL-LHC UPGRADE

New Muon Chambers Inner barrel region with new **RPC and sMDT detectors**

new and upgraded forward and luminosity detectors

new High-Granularity Timing Detector (HGTD)

HL-LHC UPGRADE

Upgraded Trigger and Data Acquisition system Level-0 Trigger at 1 MHz, Full-feature global trigger Improved High-LevelTrigger (150 kHz full-scan tracking)

ITK: All silicon, up to $|\eta| = 4$ strongly augmented tracking acceptance, 50x present channels \rightarrow for pile-up rejection

New Muon Chambers Inner barrel region with new **RPC and sMDT detectors**

new and upgraded forward and luminosity detectors

High Granularity Timing **Detector (HGTD)** Forward region **(2.4 < I**η**I** < **4.0**)

HL-LHC UPGRADE

Upgraded Trigger and Data Acquisition system Level-0 Trigger at 1 MHz, Full-feature global trigger Improved High-LevelTrigger (150 kHz full-scan tracking)

ITK: All silicon, up to $|\eta| = 4$ strongly augmented tracking acceptance, 50x present channels \rightarrow to cope with high occupancy

ADDITIONAL MATERIAL

P. Ferrari on behalf of the ATLAS Nikhef group

Nikhef

Grants awarded 2017-2022

ATLAS group

- EU Marie Curie Innovative Training Network INSIGHTS (Verkerke, e400k) FOM Projectruimte (van Eijk/Ferrari, e500k)
- NWO ENW-GROOT Higgs (Verkerke, e3000k)
- NWO VENI (Arnold, e300k)
- NWO VIDI (de Almeida Dias, e800k)
- OCW NWA (Caron, e130k)

Together with other Nikhef groups

- NWO ENW-M2 Higgs (Rojo/Verkerke, e700k) ATLAS share ~25% NOW XL Faster (Snoek, e3000k) – ATLAS share ~15%

Total amount awarded 2017-2022 e5.6m

HANDS ON ITK ! Assembly of ITk strip endcap at Nikhef

P. Ferrari on behalf of the ATLAS Nikhef group

