v Parameters in Fall 2016

Patrick Decowski <u>decowski@nikhef.nl</u>

Latest Results

- Results have been presented at Nu 2016 (London):
 - <u>http://neutrino2016.iopconfs.org/programme</u>
- New (v property) results from:
 - Super-Kamiokande
 - Daya Bay
 - RENO
 - T2K
 - NOvA
 - KamLAND Zen
- Skipping sterile neutrinos (no evidence)

Neutrinos and the flavour puzzle

The v sector is, at least, half of the flavour puzzle and we are still missing several pieces!! (that we know of)

E.F. Martinez

Neutrinos and the flavour puzzle

The v sector is, at least, half of the flavour puzzle and we are still missing several pieces!! (that we know of)

E.F. Martinez

Experimental site

Poster Id: P2.063 by Maxim Gonchar

Last publication:	$\sin^2 2\theta_{13} =$	[8.4±0.5] × 10 ⁻²
P. R. L. 115, 111802 (2015)	$ \Delta m^2_{ee} =$	$]2.42\pm0.11]\times10^{-3}eV^{2}$

Oscillation results

1230 days data

- Most precise measurement
 - $\sin^2 2\theta_{13}$ and $|\Delta m^2_{32}|$
- Consistent results among
 - The MeV-scale reactor
 - The GeV-scale accelerator and atmospheric experiments

$$P_{\rm sur} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$$

 $\Delta m_{32}^2 (NH) = [2.45 \pm 0.08] \times 10^{-3} eV^2$ $\Delta m_{32}^2 (IH) = [-2.55 \pm 0.08] \times 10^{-3} eV^2$

* Fit with full 3-flavor oscillation formula assuming normal mass hierarchy. ¹⁴

T2K: ND280 "near" detectors J-PARC Super-Kamiokande "far" detector Kamioka Tokai 295 km ~400 collaborators 59 institutions

11 nations

- Intense muon (anti)neutrino beam from J-PARC to Super-K to study:
 - muon (anti) neutrino disappearance $(v_{\mu} \rightarrow v_{\mu}, \overline{v}_{\mu} \rightarrow \overline{v}_{\mu})$
 - electron (anti)neutrino appearance $(v_{\mu} \rightarrow v_{e}, \overline{v_{\mu}} \rightarrow \overline{v_{e}})$
 - rich program of
 - neutrino-nucleus interaction studies with near detectors
 - "exotic" physics: Lorentz violation, sterile neutrinos, heavy leptons, etc.
- Will not be able to discuss these other interesting topics. H.A. Tanaka

QUICK SUMMARY

- $\sin^2\theta_{23}$, $\sin^22\theta_{13}$
 - enhance/suppress both $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$
- CP violating parameter δ_{CP} up to ±30% effect at T2K
 - $\delta_{CP}=0,\pi$: no CP violation: vacuum oscillation probabilities equal
 - $\delta_{CP} \sim -\pi/2$: enhance $v_{\mu} \rightarrow v_{e}$, suppress $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$
 - $\delta_{CP} \sim +\pi/2$: suppress $v_{\mu} \rightarrow v_{e}$, enhance $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$

"inverted" hierarchy: (IH)

- suppress $v_{\mu} \rightarrow v_e$
- enhance $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$

H.A. Tanaka

$\delta_{CP} VS. \theta_{13}$

20% of full statistics v:anti-v = 1:1

Left: δ_{CP} vs. θ_{13} (fixed $\Delta \chi^2$, fixed hierarchy)

- T2K-only
- T2K with reactor $\sin^2 2\theta_{13} = 0.085 \pm 0.005$ Below: δ_{CP} with Feldman-Cousins critical

values and reactor θ_{13}

NOvA

P. Vahle, Neutrino 2016 🚿

- Long-baseline, off-axis neutrino oscillation experiment
- Study neutrinos from NuMI beam at Fermilab
- □ At 14 mrad off-axis, energy peaked at 2 GeV
- Functionally identical detectors
 - ND on site at Fermilab
 - FD 810 km away in Ash River, MN
 - Measurement at ND is directly used to predict FD

Contours

17

\square Fit for Δm^2 and $sin^2 \theta_{23}$

Dominant systematic effects included in fit:

P. Vahle, Neutrino 2016

- Normalization
- NC background
- Flux
- Muon and hadronic energy scales
- Cross section
- Detector response and noise

Best Fit (in NH): $\left|\Delta m_{32}^2\right| = 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

Maximal mixing excluded at 2.5σ

See Poster P1.029 by L. Vinton and B. Zamorano for more detail on systematics

15% of full statistics v:anti-v = 1:0

P. Vahle, Neutrino 2016

Contours

 \square Fit for hierarchy, $\boldsymbol{\delta}_{\mathrm{CP}}$, $\sin^2\theta_{23}$

- Constrain Δm^2 and $\sin^2\theta_{23}$ with NOvA disappearance results
- Not a full joint fit, systematics and other oscillation parameters not correlated
- Global best fit Normal Hierarchy

 $\delta_{CP} = 1.49\pi$ $\sin^2(\theta_{23}) = 0.40$

- best fit IH-NH, $\Delta \chi^2 = 0.47$
- \hfill both octants and hierarchies allowed at 1σ
- 3σ exclusion in IH, lower octant around $\delta_{\rm CP} = \pi/2$

Antineutrino data will help resolve degeneracies, particularly for non-maximal mixing Planned for Spring 2017

Appearance Systematics

59

 \bigcirc

P. Vahle, Neutrino 2016 🥻

Global Analysis: NuFit Collaboration

Solar experiments

- Chlorine total rate [15], 1 data point.
- Gallex & GNO total rates [16], 2 data points.
- SAGE total rate [17], 1 data point.
- SK1 full energy and zenith spectrum [18], 44 data points.
- SK2 full energy and day/night spectrum [19], 33 data points.
- SK3 full energy and day/night spectrum [20], 42 data points.
- SK4 2055-day day-night asymmetry [21] and 2365-day energy spectrum [22], 24 data points.
- SNO combined analysis [23], 7 data points.
- Borexino Phase-I 740.7-day low-energy data [24], 33 data points.
- Borexino Phase-I 246-day high-energy data [25], 6 data points.
- Borexino Phase-II 408-day low-energy data [26], 42 data points.

Atmospheric experiments

• IceCube/DeepCore 3-year data [48, 70], 64 data points.

Reactor experiments

- KamLAND combined DS1 & DS2 spectrum [32], 17 data points.
- CHOOZ energy spectrum [33], 14 data points.
- Palo-Verde total rate [34], 1 data point.
- Double-Chooz FD-I (461 days) and FD-II (212 days) spectra [35], 54 data points.
- Daya-Bay 1230-day spectrum [36], 34 data points.
- Reno 800-day near & far total rates [37], 2 data points (with free normalization).
- SBL reactor data (including Daya-Bay total flux at near detector), 77 data points [38, 71].

Esteban et al., arXiv:1611.01514v1

- Accelerator experiments
 - MINOS 10.71×10^{20} pot ν_{μ} -disappearance data [27], 39 data points.
 - MINOS 3.36×10^{20} pot $\bar{\nu}_{\mu}$ -disappearance data [27], 14 data points.
 - MINOS 10.6×10^{20} pot ν_e -appearance data [28], 5 data points.
 - MINOS 3.3×10^{20} pot $\bar{\nu}_e$ -appearance data [28], 5 data points.
 - T2K 7.48 × 10²⁰ pot ν_{μ} -disappearance data [29, 30], 28 data points.
 - T2K 7.48 × 10²⁰ pot ν_e -appearance data [29, 30], 5 data points.
 - T2K 7.47 \times 10²⁰ pot $\bar{\nu}_{\mu}$ -disappearance data [29, 30], 63 data points.
 - T2K 7.47 × 10²⁰ pot $\bar{\nu}_e$ -appearance data [29, 30], 1 data point.
 - NO ν A 6.05 × 10²⁰ pot ν_{μ} -disappearance data [31], 18 data points.
 - NO ν A 6.05×10^{20} pot ν_e -appearance data [31], 10 data points.

Global Fit

Esteban et al., arXiv:1611.01514v1

Global Fit: NuFIT 3.0

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 0.83)$		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$
$ heta_{12}/^{\circ}$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$
$\sin^2 heta_{23}$	$0.441^{+0.027}_{-0.021}$	$0.385 \rightarrow 0.635$	$0.587\substack{+0.020 \\ -0.024}$	$0.393 \rightarrow 0.640$	0.385 ightarrow 0.638
$ heta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$50.0^{+1.1}_{-1.4}$	$38.8 \rightarrow 53.1$	$38.4 \rightarrow 53.0$
$\sin^2 heta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \to 0.02392$	$0.02179\substack{+0.00076\\-0.00076}$	$0.01953 \rightarrow 0.02408$	$0.01934 \rightarrow 0.02397$
$ heta_{13}/^\circ$	$8.46_{-0.15}^{+0.15}$	$7.99 \rightarrow 8.90$	$8.49_{-0.15}^{+0.15}$	$8.03 \rightarrow 8.93$	$7.99 \rightarrow 8.91$
$\delta_{ m CP}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	277^{+40}_{-46}	$145 \rightarrow 391$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	7.03 ightarrow 8.09
$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.643$	$-2.514^{+0.038}_{-0.041}$	$-2.635 \rightarrow -2.399$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $

Combination LBL & Reactor

Hint for NO below $I\sigma$

Solar Osc Parameters

 Δm^2_{21} : 2 σ "tension"

0ν2β

- EXO-200 running again
- CUORE about to start
- GERDA taking a run
- KamLAND-Zen 800 will not start for another year...

