

Table of contents

01 Introduction

Applications of HPGe detector

02 Working Principle

Parts and function of HPGe detector

03 Limitation

Drawback of HPGe detector

O4 Future prospects AGATA / GRETA

Туре

Why Germanium?

ୢୖ

 HPGe detectors are semiconductor diodes
P-type: doped with trivalent impurity (e.g. Boron)

• *N-type*: doped with pentavalent impurity (e.g. Phosphorus)

Except for its large crystals, due to germanium's higher atomic number and lower average energy necessary to create an electron-hole pair (2.9 keV) HPGe detectors are more efficient than silicon ones

What does it detect?

HPGe detectors are sensetive to ioniziong radiation, particularly X-rays and γ-rays

HPGe detectors produce the highest resolution -0.2% at 1 MeV- commonly available!

Gamma-ray tracking

Nuclear security operations **Environment al monitoring**

• Medical applications

Nuclear plant safety • Radiometric assay

O2 Working principle

Isolator vs semiconductor vs metal.
(b) Source: [3]

Ionizing radiation enters the germanium crystal and interacts with the semiconductor material

XÔX

 \bigcirc

A HE photon passing through the detector ionizes the atoms of the semiconductor producing electron-hole pairs

Under the influence of an electric field, electrons and holes travel to the electrodes

The pulse that carries information about the photon's energy is measured in an outer circuit

Semiconductor setup.

Limitation

Cooling Requirement

Liquid nitrogen cryostat Source: [7]

AGATA (Advanced Gamma Tracking Array)

Aim: Developing and building a 4pi gammaray spectrometer of the next generation

Array of 180 large encapsulated HPGe

Based on gamma-ray tracking

 \checkmark 40 research institutes in 13 European countries

Artist's view of the 4π AGATA spectrometer showing the mechanical holding frame (yellow) and cryostat dewars (blue) of the HPGe detectors. The figure is from <u>the AGATA Science</u> <u>White Book</u>.

GRETA (Gamma-Ray Energy Tracking Array)

It's claimed to be of order of 1000 times more powerful than the best present arrays

Shell of ~100 highly segmented large HPGe

Based on gamma-ray tracking

Facility for Rare Isotope Beams (FRIB) at Michigan State University

A rendering of GRETA, the Gamma-Ray Energy Tracking Array. (Credit: Berkeley Lab)

References

[1] Application of HPGe Detectors | Application of HPGe Detectors | nuclear-power.com

[2] HPGe Detector Application on Monitoring Enviromental Samples Around the Accelerator | wepor024.pdf (cern.ch)

[3] https://indico.cern.ch/event/975141/contributions/4157759/attachments/2165445/3654609/2020-Lecture-4-2-

Semiconductor%20Detectors.pdf

[4] http://www.vikdhillon.staff.shef.ac.uk/teaching/phy217/detectors/phy217_det_structure.html

[5] Advantages and Disadvantages of HPGe Detectors | nuclear-power.com

[6] https://www.agata.org/about

[7] https://www.mirion.com/products/technologies/spectroscopy-scientific-analysis/gamma-spectroscopy/detectors/hpge-cryostatscoolers-options/flanged-cryostats-liquid-nitrogen-cryostat

[8] https://greta.lbl.gov/

Thank you for your attention!